File Distribution Efficiencies:
cfengine vs. rsync

Andrew Mayhew — Logictier, Inc.

ABSTRACT

This papers reports on a preliminary investigation of the performance of cfengine and rsync
for file distribution for the purposes of system maintenance. It focuses on two aspects of file
distribution: the transfer during an initial copy from a master server to a client, and the file
verification of the client’s files against the server’s files. It is shown that for larger file transfers
rsync performs better, while cfengine manages smaller transfers better.

Introduction

In originally implementing cfengine (v1.5.4) for
host management on our network, we ran across sev-
eral problems with the file transfer protocol [smith].
Due to faults which would halt transfers mid-session
we decided that a replacement method for synchroniz-
ing applications and configurations between the
servers and individual nodes was needed. We did not,
however, wish to completely get rid of cfengine,
because we still found its other features for system
immunization useful. As such, we implemented an
rsync over SSH system controlled and run from each
particular host’s cfengine agent. While this has
worked quite well, this kludge introduces some possi-
ble instabilities and quirks in operations.

As cfengine has matured, many of the problems
and bugs that we originally faced have been
addressed. In reviewing our file synchronization
method against current versions of cfengine, we
decided to more systematically test various copy
methods available to see which was really most suit-
able for our needs. While there are several other file-
copying systems available, our testing is focused on
cfengine and rsync and how various levels of securing
the network affect transfer speeds.

Testing Methodology

The repository server was a Sun E450 (four 440
MHz UltraSparc CPU’s and 2 GB of RAM) running

Solaris 7. The clients being served in these tests were
a Dell PowerEdge 2450 (two 700 MHz PIII CPU’s
and 512 MB of RAM) running RedHat Linux 6.2, and
a Sun Netra T1 (one 440 MHz UltraSparc CPU and 1
GB of RAM) running Solaris 7. In all cases, the
machines were running near completely idle with only
a minimum number of required processes running in
order to obviate any possible interaction issues. All
hosts ran 100 mbit full-duplex Ethernet connected to a
single switch isolated from the rest of our network, to
eliminate any possible networking issues. Each test
run was done in a serial fashion so that only one client
was communicating with the server at a given time.

The versions of the file transfer applications used
at the time were cfengine v1.6.3 and rsync v2.3.1.
Cfengine was additionally patched to be able to
directly call any external copy method desired by the
user [patch]. A typical rsync incantation and similar
cfengine configuration are shown in Listing 1 for
example purposes.

There were four different copy configurations
run with four different-sized transfers. The copy con-
figurations were:

¢ Baseline cfengine copy: This uses the native
non-encrypted cfengine copy method.

¢ Tunneled cfengine copy: Native cfengine copy
method run over an SSH tunnel.

¢ 3DES cfengine copy: Native
cfengine copy method.

encrypted

rsync -qrplogDze "ssh -1 cfengine -i .identity -o StrictHostKeyChecking=no" \
server:/master/repository /local/destination

copy:
/master/repository

mode=0444
secure=true
recurse=inf
server=$(cfd_master)
ignore=CVS
backup=false
type=md5
purge=false

dest=/local/destination

Listing 1: Typical rsync invocation.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

263

File Distribution Efficiencies: cfengine vs. rsync

e External rsync copy: Externally called from
cfengine rsync copy with SSH as the rsync
transport.

The four different-sized transfers were as follows:

e Small: 128K, 22 files, 1 directory

o Medium: 2096K, 51 files, 2 directories

e Large: 209096K, 4726 files, 454 directories

e Larger: 258388K, 5646 files, 528 directories

The above configurations were run five times on
each machine at each transfer size with debugging
first turned on and then again with debugging turned
off, to produce 800 data points (4 transfer setups * 4
different-sized transfers * 5 runs with debugging on *

Mayhew

5 runs with debugging off * 2 client machines).
Between runs, the copied files were removed. The
whole test cycle was then repeated to test file verifica-
tion speeds, for an additional 800 data points [raw].
File verification consisted of the process of subsequent
runs to check the files against the server for changes,
either locally or on the server. Our tests for verifica-
tion were performed with no changes to the files on
either client or server.

Results

For the actual transfer of data, the various meth-
ods ordered themselves out fairly evenly. While rsync

128K File Copy and Verify

10 T T .
o
2 é A
Blopgd b
3] : : : : : :
o
@ : 5 : 5 :
| T T A e
= % : : :@: :
: f M 5 :
I N . N
: : : : : i Ay
avi o0 pavi Y

|
0 cfengine‘tunneled 3DES ‘ rsync

cfengine | cfengine

200M File Copy and Verify

2096K File Copy and Verify

RN

St L

o7 RS SO O SRR SUSI OUONS SRR S

'ERK IR

Time (seconds)
(0]
!
i

3DES

0 -
cfengine | tunneled N
cfengine | cfengine

‘ rsync

258M File Copy and Verify

1600 —
OO B
1200 oo g oo
g OO O N OO O S
2 1000 e o L L o C
3 R .
@ 800p e L L L A L]
= °00 Esmi ------ L - O]
: : : : : : c
400 oot P s LT C g‘
: : : . AV E :
] AR U RS NS SO S
Av: : : : Z Coowe
0 | | 1 |] | 1
cfengine | tunneled | 3DES rsync
cfengine | cfengine

A Linux file copy OSolaris file copy
v Linux file verify OSolaris file verify

Figure 1: Comparison of file transfer performance.

2000 ——
1500 [~
2 &
8 E E E E E 5 .
8 1000 A
2 g
= E E : E % : E
SO0 E L
: : : : E 1
. . AV .
E . I : DA
ol AL Ly
cfengine | tunneled | 3DES rsync
cfengine | cfengine
Key:
264

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Mayhew

ran as fast as, or faster than, cfengine on Solaris, under
Linux rsync was slower than both cfengine methods
until the large transfers, where rsync out-paced 3DES
cfengine.

Cfengine tunneled over SSH performed poorly in
all tests and showed itself to be a non-valid solution to
the problem. This poor performance resulted because
communications between cfengine and SSH was
through TCP Socket connections. This created more
work for the OS’s TCP stack since two sockets were
opened on each machine (client and server) per con-
nection. In addition to observing a slow initialization
and poor general performance, we also found in test-
ing that setting up the tunnel was too brittle to be used
in an actual production environment. This instability
was attributed to the timings required from opening
the tunnel and then initiating the cfengine communica-
tion through that tunnel. This timing issue was most
problematic when cfengine needed to close and then
open a new connect to a cfd server. If the SSH tunnel
had not closed before the new cfengine connection
was attempted, then a port conflict would arise and the
new connection would fail.

What was more interesting was the comparison
between rsync and 3DES cfengine, since both used
3DES, from the same OpenSSL [SSL] library, for
their cipher. Rsync did suffer in smaller transfers,
mostly due to the initialization time required to handle
the RSA authentication between hosts. 3DES
Cfengine was slower for the large file transfers,
mostly due to the extra checks on the client side. The
process cfengine used in a transfer was to write the
incoming file to a temporary location and then verify
that the file was successfully saved before copying it
to its final destination on the local disk. It was only a
slight increase in I/O utilization in comparison to
rsync, but it did slow down the overall transfer pro-
cess. Those extra checks ensured that the files arrived
uncorrupted, which was especially important for dis-
tributing critical binaries and data files.

For file verification, the RSA authentication used
for rsync created an initial performance hit in opening
the connection, which dramatically affected results for
smaller file sets. Rsync’s checksum algorithm
[tridgell] allowed it to best cfengine in the larger file
set verifications, even when cfengine was not
encrypted. Part of this was because much of the 1/0
and computational actions are off-loaded by rsync
onto the server. With the server being unloaded and
having considerably more power than the client, this
was a definite plus in our test environment. But this
would create scaling problems as demand on the
server increased. What constitutes a large demand,
though, was not within the scope of our testing. For its
file verification, cfengine sent the server the MDS35
checksum of its local file. The server then did an MD5
check of its file (which is cached) and responded with
the results of the check. While this was a more simpli-
fied check than rsync’s rolling CRC’s, it was just as

2001 LISA XV — December 2-7, 2001 — San Diego, CA

File Distribution Efficiencies: cfengine vs. rsync

effective for file verification. The requirement of the
client to handle much of the verification load was con-
sistent with the general cfengine design philosophy of
“smart client/dumb server” and allowed the server to
scale in order to handle more client requests. This did
put a slightly greater load on each individual client,
although, nothing so significant as to generally hinder
the client from performing its primary function.

Conclusions

The results of our tests are preliminary and come
from only a single set of parameters. As such, it is dif-
ficult to make any definitive conclusions, but we can
see trends developing. It can be seen that rsync has
advantages over cfengine for large file transport and
verification. This is particularly the case where there
are a large number of files which have frequent small
changes that need to be kept synchronized. On the
other hand, if you are interested in synchronizing a
few megabytes’ worth of less frequently changing
data, cfengine is a better choice. This is especially true
if you are going to use cfengine’s other more interest-
ing features to actually maintain the client hosts. The
one advantage that rsync does have over cfengine is
the ability to use RSA authentication.

As cfengine evolves, the advantages of rsync for
transport and verification of file sets may diminish.
The cfengine protocol in the 2.0.x versions is still in
the development stages, but already gets rid of the
4096 byte block sizing issue and other transport effi-
ciency issues. Additionally, RSA-style authentication
is in the process of being implemented.

Author Information

Andrew Mayhew has a BS-CS from the Univer-
sity of Central Florida in 1997. He stayed in Orlando
to work at various ISP’s until moving to California to
work for Netscape Communication. He left Netscape
after the AOL purchase to work as a Senior Internet
Infrastructure Engineer for Logictier, Inc. until their
closing this September. He continues to live in Sunny-
vale, CA and can be reached electronically at amayhew(@
icewire.com .

References and Further Reading

[cfengine] “Cfengine,” http://www.cfengine.org/ .

[SSH] “OpenSSH,” http://www.openssh.org/.

[SSL] “OpenSSL,” http://www.openssl.org/.

[patch] Mayhew, Andrew, “A cfengine Patch Used to
Test External Copy Methods,” http://icewire.
com/cfengine/patches/ .

[raw] Mayhew, Andrew, Test scripts, configurations,
and results wused for this paper, http:/
icewire.com/cfengine/testing/ .

[rsync] “Rsync,” http://rsync.samba.org/ .

[smith] Smith, Gregory P., ““The Perl cfd Replacement
Daemon,” http://perl-cfd.sourceforge.net/ README.
perl-cfd.html .

265

File Distribution Efficiencies: cfengine vs. rsync Mayhew

[tridgell] Tridgell, Andrew, and Paul Mackerras, “The
rsync algorithm,” http://rsync.samba.org/rsync/
tech_report/.

266 2001 LISA XV — December 2-7, 2001 — San Diego, CA

