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GROUPS OF ORDER pm, WHICH CONTAIN CYCLIC
SUBGROUPS OF ORDER p(m−3)1

by

lewis irving neikirk

Introduction.

The groups of order pm, which contain self-conjugate cyclic subgroups of
orders pm−1, and pm−2 respectively, have been determined by Burnside,2 and
the number of groups of order pm, which contain cyclic non-self-conjugate sub-
groups of order pm−2 has been given by Miller.3

Although in the present state of the theory, the actual tabulation of all
groups of order pm is impracticable, it is of importance to carry the tabulation
as far as may be possible. In this paper all groups of order pm (p being an odd
prime) which contain cyclic subgroups of order pm−3 and none of higher order
are determined. The method of treatment used is entirely abstract in character
and, in virtue of its nature, it is possible in each case to give explicitly the
generational equations of these groups. They are divided into three classes, and
it will be shown that these classes correspond to the three partitions: (m−3, 3),
(m− 3, 2, 1) and (m− 3, 1, 1, 1), of m.

We denote by G an abstract group G of order pm containing operators of
order pm−3 and no operator of order greater than pm−3. Let P denote one
of these operators of G of order pm−3. The p3 power of every operator in G is
contained in the cyclic subgroup {P}, otherwiseG would be of order greater than
pm. The complete division into classes is effected by the following assumptions:

I. There is in G at least one operator Q1, such that Qp2

1 is not contained in
{P}.

II. The p2 power of every operator in G is contained in {P}, and there is at
least one operator Q1, such that Qp

1 is not contained in {P}.

III. The pth power of every operator in G is contained in {P}.

1Presented to the American Mathematical Society April 25, 1903.
2Theory of Groups of a Finite Order, pp. 75-81.
3Transactions, vol. 2 (1901), p. 259, and vol. 3 (1902), p. 383.
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The number of groups for Class I, Class II, and Class III, together with the
total number, are given in the table below:

I II1 II2 II3 II III Total
p > 3
m > 8 9 20 + p 6 + 2p 6 + 2p 32 + 5p 23 64 + 5p
p > 3
m = 8 8 20 + p 6 + 2p 6 + 2p 32 + 5p 23 63 + 5p
p > 3
m = 7 6 20 + p 6 + 2p 6 + 2p 32 + 5p 23 61 + 5p
p = 3
m > 8 9 23 12 12 47 16 72
p = 3
m = 8 8 23 12 12 47 16 71
p = 3
m = 7 6 23 12 12 47 16 69

Class I.

1. General notations and relations.—The group G is generated by the two
operators P and Q1. For brevity we set4

Qa
1 P

bQc
1 P

d · · · = [a, b, c, d, · · · ].

Then the operators of G are given each uniquely in the form

[y, x]

(
y = 0, 1, 2, · · · , p3 − 1

x = 0, 1, 2, · · · , pm−3 − 1

)
.

We have the relation

(1) Qp3

1 = Php3
.

There is in G, a subgroup H1 of order pm−2, which contains {P} self-conjugate-
ly.5 The subgroup H1 is generated by P and some operator Qy

1P
x of G; it then

contains Qy
1 and is therefore generated by P and Qp2

1 ; it is also self-conjugate
in H2 = {Qp

1, P} of order pm−1, and H2 is self-conjugate in G.
From these considerations we have the equations6

Q−p2

1 P Qp2

1 = P 1+kpm−4
,(2)

Q−p
1 P Qp

1 = Qβp2

1 Pα1 ,(3)

Q−1
1 P Q1 = Qbp

1 P a1 .(4)

4With J. W. Young, On a certain group of isomorphisms, American Journal of Mathe-
matics, vol. 25 (1903), p. 206.

5Burnside: Theory of Groups, Art. 54, p. 64.
6Ibid., Art. 56, p. 66.
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2. Determination of H1. Derivation of a formula for [yp2, x]s.—From (2),
by repeated multiplication we obtain

[−p2, x, p2] = [0, x(1 + kpm−4)];

and by a continued use of this equation we have

[−yp2, x, yp2] = [0, x(1 + kpm−4)y] = [0, x(1 + kypm−4)] (m > 4)

and from this last equation,

(5) [yp2, x]s =
[
syp2, x{s+ k

(
s
2

)
ypm−4}

]
.

3. Determination of H2. Derivation of a formula for [yp, x]s.—It follows
from (3) and (5) that

[−p2, 1, p2] =
[
β
αp

1 − 1
α1 − 1

p2, αp
1

{
1 +

βk

2
αp

1 − 1
α1 − 1

pm−4

}]
(m > 4).

Hence, by (2),

β
αp

1 − 1
α1 − 1

p2 ≡ 0 (mod p3),

αp
1

{
1 +

βk

2
αp

1 − 1
α1 − 1

pm−4

}
+ β

αp
1 − 1
α1 − 1

hp2 ≡ 1 + kpm−4 (mod pm−3).

From these congruences, we have for m > 6

αp
1 ≡ 1 (mod p3), α1 ≡ 1 (mod p2),

and obtain, by setting

α1 = 1 + α2p
2,

the congruence

(1 + α2p
2)p − 1

α2p3
(α2 + hβ)p3 ≡ kpm−4 (mod pm−3);

and so

(α2 + hβ)p3 ≡ 0 (mod pm−4),

since

(1 + α2p
2)p − 1

α2p3
≡ 1 (mod p2).
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From the last congruences

(α2 + hβ)p3 ≡ kpm−4 (mod pm−3).(6)

Equation (3) is now replaced by

Q−p
1 P Q−p

1 = Qβp2

1 P 1+α2p2
.(7)

From (7), (5), and (6)

[−yp, x, yp] =
[
βxyp2, x{1 + α2yp

2}+ βk
(
x
2

)
ypm−4

]
.

A continued use of this equation gives

(8) [yp, x]s = [syp+ β
(

s
2

)
xyp2,

xs+
(

s
2

)
{α2xyp

2 + βk
(
x
2

)
ypm−4}+ βk

(
s
3

)
x2ypm−4].

4. Determination of G.—From (4) and (8),

[−p, 1, p] = [Np, ap
1 +Mp2].

From the above equation and (7),

ap
1 ≡ 1 (mod p2), a1 ≡ 1 (mod p).

Set a1 = 1 + a2p and equation (4) becomes

(9) Q−1
1 P Q1 = Qbp

1 P 1+a2p.

From (9), (8) and (6)

[−p2, 1, p2] =

[
(1 + a2p)p2 − 1

a2p
bp, (1 + a2p)p2

]
,

and from (1) and (2)

(1 + a2p)p2 − 1
a2p

bp ≡ 0 (mod p3),

(1 + a2p)p2
+ bh

(1 + a2p)p2 − 1
a2p

p ≡ 1 + kpm−4 (mod pm−3).

By a reduction similar to that used before,

(10) (a2 + bh)p3 ≡ kpm−4 (mod pm−3).

The groups in this class are completely defined by (9), (1) and (10).
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These defining relations may be presented in simpler form by a suitable
choice of the second generator Q1. From (9), (6), (8) and (10)

[1, x]p
3

= [p3, xp3] = [0, (x+ h)p3] (m > 6),

and, if x be so chosen that

x+ h ≡ 0 (mod pm−6),

Q1 P
x is an operator of order p3 whose p2 power is not contained in {P}. Let

Q1 P
x = Q. The group G is generated by Q and P , where

Qp3
= 1, P pm−3

= 1.

Placing h = 0 in (6) and (10) we find

α2p
3 ≡ a2p

3 ≡ kpm−4 (mod pm−3).

Let α2 = αpm−7, and a2 = apm−7. Equations (7) and (9) are now replaced by

(11)
Q−p P Qp = Qβp2

P 1+αpm−5
,

Q−1 P Q = QbpP 1+apm−6
.

As a direct result of the foregoing relations, the groups in this class corre-
spond to the partition (m− 3, 3). From (11) we find7

[−y, 1, y] = [byp, 1 + aypm−6] (m > 8).

It is important to notice that by placing y = p and p2 in the preceding
equation we find that8

b ≡ β (mod p), a ≡ α ≡ k (mod p3) (m > 7).

A combination of the last equation with (8) yields9

(12) [−y, x, y] = [bxyp+ b2
(
x
2

)
yp2,

x(1 + aypm−6) + ab
(
x
2

)
ypm−5 + ab2

(
x
3

)
ypm−4] (m > 8).

7For m = 8 it is necessary to add a2
(y
2

)
p4 to the exponent of P and for m = 7 the terms

a(a + abp
2

)
(y
2

)
p2 + a3

(y
3

)
p3 to the exponent of P , and the term ab

(y
2

)
p2 to the exponent of Q.

The extra term 27ab2k
(y
3

)
is to be added to the exponent of P for m = 7 and p = 3.

8For m = 7, ap2 − a2p3

2
≡ ap2 (mod p4), ap3 ≡ kp3 (mod p4). For m = 7 and p = 3 the

first of the above congruences has the extra terms 27(a3 + abβk) on the left side.
9For m = 8 it is necessary to add the term a

(y
2

)
xp4 to the exponent of P , and for m = 7

the terms x{a(a+ abp
2

)
(y
2

)
p2 +a3

(y
3

)
p3} to the exponent of P , with the extra term 27ab2k

(y
3

)
x

for p = 3, and the term ab
(y
2

)
xp2 to the exponent of Q.
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From (12) we get10

(13) [y, x]s =
[
ys+ by

{
(x+ b

(
x
2

)
p)
(

s
2

)
+ x
(

s
3

)
p
}
p,

xs+ ay
{
(x+ b

(
x
2

)
p+ b2

(
x
3

)
p2)
(

s
2

)
+ (bx2p+ 2b2x

(
x
2

)
p2)
(

s
3

)
+ bx2

(
s
4

)
p2
}
pm−6

]
(m > 8).

5. Transformation of the Groups.—The general group G of Class I is spec-
ified, in accordance with the relations (2) (11) by two integers a, b which (see
(11)) are to be taken mod p3, mod p2, respectively. Accordingly setting

a = a1p
λ, b = b1p

µ,

where

dv[a1, p] = 1, dv[b1, p] = 1 (λ = 0, 1, 2, 3; µ = 0, 1, 2),

we have for the group G = G(a, b) = G(a, b)(P, Q) the generational determi-
nation:

G(a, b) :

{
Q−1 P Q = Qb1pµ+1

P 1+a1pm+λ−6

Qp3
= 1, P pm−3

= 1.

Not all of these groups however are distinct. Suppose that

G(a, b)(P, Q) ∼ G(a′, b′)(P ′, Q′),

by the correspondence

C =
[
Q, P
Q′

1, P ′
1

]
,

where

Q′
1 = Q′y′P ′x′pm−6

, and P ′
1 = Q′yP ′x,

10For m = 8 it is necessary to add the term 1
2
axy

(s
2

)
[ 1
3
y(2s − 1) − 1]p4 to the exponent of

P , and for m = 7 the terms

x
{a

2

(
a +

ab

2
p
)(2s − 1

3
y − 1

)(s
2

)
yp2 +

a3

3!

((s
2

)
y2 − (2s − 1)y + 2

)
yp3

+
a2bxy2

2

(s
3

)3s − 1

2
p3 +

a2b

2

( s(s − 1)2(s − 4)

4!
y −

(s
3

))
yp3

}
with the extra terms

27abxy
{ bk

3!

[(s
2

)
y2 − (2s − 1)y + 2

](s
3

)
+ x(b2k + a2)(2y2 + 1)

(s
3

)}
,

for p = 3, to the exponent of P , and the terms ab
2

{
2s− 1

3
y− 1

}(s
2

)
xyp2 to the exponent of Q.
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with y′ and x prime to p.
Since

Q−1 P Q = QbpP 1+apm−6
,

then

Q′−1
1 P ′

1Q
′
1 = Q′bp

1 P
′1+apm−6

1 ,

or in terms of Q′, and P ′[
y + b′xy′p+ b′2

(
x
2

)
y′p2, x(1 + a′y′pm−6) + a′b′

(
x
2

)
y′pm−5

+ a′b′2
(
x
3

)
y′pm−4

]
= [y + by′p, x+ (ax+ bx′p)pm−6] (m > 8)

and

by′ ≡ b′xy′ + b′2
(
x
2

)
y′p (mod p2),(14)

ax+ bx′p ≡ a′y′x+ a′b′
(
x
2

)
y′p+ a′b′2

(
x
3

)
y′p2 (mod p3).(15)

The necessary and sufficient condition for the simple isomorphism of these two
groups G(a, b) and G(a′, b′) is, that the above congruences shall be consistent
and admit of solution for x, y, x′ and y′. The congruences may be written

b1p
µ ≡ b′1xp

µ′ + b′
2
1

(
x
2

)
p2µ′+1 (mod p2),

a1xp
λ + b1x

′pµ+1 ≡

y′{a′1xpλ′ + a′1b
′
1

(
x
2

)
pλ′+µ′+1 + a′1b

′2
1

(
x
3

)
pλ′+2µ′+2} (mod p3).

Since dv[x, p] = 1 the first congruence gives µ = µ′ and x may always be so
chosen that b1 = 1.

We may choose y′ in the second congruence so that λ = λ′ and a1 = 1 except
for the cases λ′ ≥ µ+ 1 = µ′ + 1 when we will so choose x′ that λ = 3.

The type groups of Class I for m > 811 are then given by

(I) G(pλ, pµ) : Q−1 P Q = Qp1+µ

P 1+pm−6+λ

, Qp3
= 1, P pm−3

= 1(
µ = 0, 1, 2; λ = 0, 1, 2; λ ≥ µ;
µ = 0, 1, 2; λ = 3

)
.

Of the above groups G(pλ, pµ) the groups for µ = 2 have the cyclic sub-
group {P} self-conjugate, while the group G(p3, p2) is the abelian group of
type (m− 3, 3).

11For m = 8 the additional term ayp appears on the left side of the congruence (14) and
G(1, p2) and G(1, p) become simply isomorphic. The extra terms appearing in congruence
(15) do not effect the result. For m = 7 the additional term ay appears on the left side of
(14) and G(1, 1), G(1, p), and G(l, p2) become simply isomorphic, also G(p, p) and G(p, p2).
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Class II.

1. General relations.
There is in G an operator Q1 such that Qp2

1 is contained in {P} while Qp
1 is

not.

(1) Qp2

1 = Php2
.

The operators Q1 and P either generate a subgroup H2 of order pm−1, or
the entire group G.

Section 1.

2. Groups with independent generators.
Consider the first possibility in the above paragraph. There is in H2, a sub-

group H1 of order pm−2, which contains {P} self-conjugately.12 H1 is generated
by Qp

1 and P . H2 contains H1 self-conjugately and is itself self-conjugate in G.
From these considerations13

Q−p
1 P Qp

1 = P 1+kpm−4
,(2)

Q−1
1 P Q = Qβp

1 Pα1 .(3)

3. Determination of H1 and H2.
From (2) we obtain

(4) [yp, x]s =
[
syp, x

{
s+ k

(
s
2

)
ypm−4

}]
(m > 4),

and from (3) and (4)

[−p, 1, p] =
[
αp

1 − 1
α1 − 1

βp, αp
1

{
1 +

βk

2
αp

1 − 1
α1 − 1

pm−4

}]
.

A comparison of the above equation with (2) shows that

αp
1 − 1
α1 − 1

βp ≡ 0 (mod p2),

αp
1

{
1 +

βk

2
αp

1 − 1
a1 − 1

pm−4

}
+
αp

1 − 1
α1 − 1

βhp ≡ 1 + kpm−4 (mod pm−3),

and in turn

αp
1 ≡ 1 (mod p2), α1 ≡ 1 (mod p) (m > 5).

Placing α1 = 1 + α2p in the second congruence, we obtain as in Class I

(5) (α2 + βh)p2 ≡ kpm−4 (mod pm−3) (m > 5).
12Burnside, Theory of Groups, Art. 54, p. 64.
13Ibid., Art. 56, p. 66.
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Equation (3) now becomes

(6) Q−1
1 P Q1 = QβP 1+α2p.

The generational equations of H2 will be simplified by using an operator of order
p2 in place of Q1.

From (5), (6) and (4)

[y, x]s = [sy + Usp, sx+Wsp]

in which

Us = β
(

s
2

)
xy,

Ws = α2

(
s
2

)
xy +

{
βk
[(

s
2

)(
x
2

)
+
(

s
3

)
x2y
]

+
1
2
αk
[ 1
3!
s(s− 1)(2s− 1)y2 −

(
s
2

)
y
]
x
}
pm−5.

Placing s = p2 and y = 1 in the above

[Q1 P
x]p

2
= Qp2

1 P
xp2

= P (x+h)p2
.

If x be so chosen that

(x+ h) ≡ 0 (mod pm−5) (m > 5)

Q1P
x will be the required Q of order p2.

Placing h = 0 in congruence (5) we find

α2p
2 ≡ kpm−4 (mod pm−3).

Let α2 = αpm−6. H2 is then generated by

Qp2
= 1, P pm−3

= 1.

(7) Q−1 P Q = QβpP 1+αpm−5
.

Two of the preceding formulæ now become

[−y, x, y] =
[
βxyp, x(1 + αypm−5) + βk

(
x
2

)
ypm−4

]
,(8)

[y, x]s = [sy + Usp, xs+Wsp
m−5],(9)

where
Us = β

(
s
2

)
xy

and14

Ws = α
(

s
2

)
xy + βk

{(
s
2

)(
x
2

)
+
(

s
3

)
x2
}
yp (m > 6).

14For m = 6 it is necessary to add the terms ak
2

{
s(s−1)(2s−1)

3!
y2 −

(s
2

)
y
}

p to Ws.
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4. Determination of G.
Let R1 be an operation of G not in H2. R

p
1 is in H2. Let

(10) Rp
1 = QλpPµp.

Denoting Ra
1 Q

b P cRd
1 Q

e P f · · · by the symbol [a, b, c, d, e, f, · · · ], all the
operations of G are contained in the set [z, y, x]; z = 0, 1, 2, · · · , p − 1; y =
0, 1, 2, · · · , p2 − 1; x = 0, 1, 2, · · · , pm−3 − 1.

The subgroup H2 is self-conjugate in G. From this15

R−1
1 P R1 = Qb1P a1 ,(11)

R−1
1 QR1 = Qd1P c1pm−5

.(12)

In order to ascertain the forms of the constants in (11) and (12) we obtain from
(12), (11), and (9)

[−p, 1, 0, p] = [0, dp
1 +Mp, Npm−5].

By (10) and (8)

Rp
1 QR

p
1 = P−µpQPµp = QP−aµpm−4

.

From these equations we obtain

dp
1 ≡ 1 (mod p) and d1 ≡ 1 (mod p).

Let d1 = 1 + dp. Equation (12) is replaced by

(13) R−1
1 QR1 = Q1+dpP e1pm−5

.

From (11), (13) and (9)

[−p, 0, 1, p] =
[
ap
1 − 1
a1 − 1

b1 +Kp, ap
1 + b1Lp

m−5

]
in which

K = a1b1β

p−1∑
1

(
ay
1
2

)
.

By (10) and (8)

R−p
1 P Rp

1 = Q−λpP Qλp = P 1+aλpm−4
,

15Burnside, Theory of Groups, Art. 24, p. 27.

13



and from the last two equations

ap
1 ≡ 1 (mod pm−5)

and

a1 ≡ 1 (mod pm−6) (m > 6); a1 ≡ 1 (mod p) (m = 6).

Placing a1 = 1 + a2p
m−6 (m > 6); a1 = 1 + a2p (m = 6).

K ≡ 0 (mod p),

and16

ap
1 − 1
a1 − 1

b1 ≡ b1p ≡ 0 (mod p2), b1 ≡ 0 (mod p).

Let b1 = bp and we find

ap
1 ≡ 1 (mod pm−4), a1 ≡ 1 (mod pm−5).

Let a1 = 1 + a3p
m−5 and equation (11) is replaced by

(14) R−1
1 P R1 = QbpP 1+a3pm−5

.

The preceding relations will be simplified by taking for R1 an operator of order
p. This will be effected by two transformations.

From (14), (9) and (13)17

[1, y]p =
[
p, yp,

−c1y
2

pm−4
]

=
[
0, (λ+ y)p, µp− c1y

2
pm−4

]
,

and if y be so chosen that

λ+ y ≡ 0 (mod p),

R2 = R1Q
y is an operator such that Rp

2 is in {P}.
Let

Rp
2 = P lp.

Using R2 in the place of R1, from (15), (9) and (14)

[1, 0, x]p =
[
p, 0, xp+

ax

2
pm−4

]
=
[
0, 0, (x+ l)p+

ax

2
pm−4

]
,

16K has an extra term for m = 6 and p = 3, which reduces to 3b1c1. This does not affect
the reasoning except for c1 = 2. In this case change P 2 to P and c1 becomes 1.

17The extra terms appearing in the exponent of P for m = 6 do not alter the result.
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and if x be so chosen that

x+ l +
ax

2
pm−5 ≡ 0 (mod pm−4),

then R = R2P
x is the required operator of order p.

Rp = 1 is permutable with both Q and P . Preceding equations now assume
the final forms

Q−1 P Q = QβpP 1+apm−5
,(15)

R−1 P R = QbpP 1+apm−4
,(16)

R−1QR = Q1+dpP cpm−4
,(17)

with Rp = 1, Qp2
= 1, P pm−3

= 1.
The following derived equations are necessary18

[0, −y, x, 0, y] =
[
0, βxyp, x(1 + αypm−5) + αβ

(
x
2

)
ypm−4

]
,(18)

[−y, 0, x, −y] =
[
0, bxyp, x(1 + aypm−4) + ab

(
x
2

)
ypm−4

]
,(19)

[−y, x, 0, y] = [0, x(1 + dyp), cxypm−4].(20)

From a consideration of (18), (19) and (20) we arrive at the expression for a
power of a general operator of G.

(21) [z, y, x]s = [sz, sy + Usp, sx+ Vsp
m−5],

where19

Us =
(

s
2

)
{bxz + βxy + dyz},

Vs =
(

s
2

){
αxy +

[
axz + αβ

(
x
2

)
y + cyz + ab

(
x
2

)
z
]
p
}

+ α
(

s
3

)
{bxz + βxy + dyz}xp.

5. Transformation of the groups. All groups of this section are given by
equations (15), (16), and (17) with a, b, β, c, d = 0, 1, 2, · · · , p − 1, and α =
0, 1, 2, · · · , p2 − 1, independently. Not all these groups, however, are distinct.
Suppose that G and G′ of the above set are simply isomorphic and that the
correspondence is given by

C =
[
R, Q, P
R′

1, Q′
1, P ′

1

]
,

in which

R′
1 = R′z′′Q′y′′pP ′x′′pm−4

,

Q′
1 = R′z′Q′y′P ′x′pm−5

,

P ′
1 = R′zQ′yP ′x,

18For m = 6 the term a2
(x
2

)
xp2 must be added to the exponent of P in (18).

19When m = 6 the following terms are to be added to Vs:
a2x
2

{
s(s−1)(2s−1)

3!
y2 −

(s
2

)
y
}

p.
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where x, y′ and z′′ are prime to p.
The operators R′

1, Q
′
1, and P ′

1 must be independent since R, Q, and P are,
and that this is true is easily verified. The lowest power of Q′

1 in {P ′
1} is Q′p2

1 = 1
and the lowest power of R′

1 in {Q′
1, P

′
1} is R′p

1 = 1. Let Q′s′
1 = P ′spm−5

1 .
This in terms of R′, Q′, and P ′ is[
s′z′, y′

{
s′ + d′

(
s′

2

)
z′p
}
, s′x′pm−5 + c′

(
s′

2

)
y′z′pm−4

]
= [0, 0, sxpm−5].

From this equation s′ is determined by

s′z′ ≡ 0 (mod p)

y′{s′ + d′
(

s
2

)
z′p} ≡ 0 (mod p2),

which give

s′y′ ≡ 0 (mod p2).

Since y′ is prime to p

s′ ≡ 0 (mod p2)

and the lowest power of Q′
1 contained in {P ′

1} is Q′p2

1 = 1.
Denoting by R′s′′

1 the lowest power of R′
1 contained in {Q′

1, P
′
1}.

R′s′′
1 = Q′s′p

1 P ′spm−4

1 .

This becomes in terms of R′, Q′, and P ′

[s′′z′′, s′′y′′p, s′′x′′pm−4] = [0, s′y′p, {s′x′ + sx}pm−4].

s′′ is now determined by

s′′z′′ ≡ 0 (mod p)

and since z′′ is prime to p

s′′ ≡ 0 (mod p).

The lowest power of R′
1 contained in {Q′

1, P
′} is therefore R′p

1 = 1.
Since R, Q, and P satisfy equations (15), (16), and (17) R′

1, Q
′
1, and P ′

1 also
satisfy them. Substituting in these equations the values of R′

1, Q
′
1, and P ′

1 and
reducing we have in terms of R′, Q′, and P ′

[z, y + θ1p, x+ φ1p
m−5] = [z, y + βy′p, x(1 + αpm−5) + βxpm−4],(22)

[z, y + θ2p, x+ φ2p
m−4] = [z, y + by′p, x(1 + apm−4) + bx′pm−4],(23)

[z′, y′ + θ3p, (x′ + φ3p)pm−5] = [z′, y′(1 + dp), x(1 + dp)pm−5 + cxpm−4],
(24)
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in which

θ1 = d′(yz′ − y′z) + x(b′z′ + β′y′),
θ2 = d′yz′′ + b′xz′′,

θ3 = d′y′z′′,

φ1 = α′xy′ +
{
α′(β′y′ + b′z′)

(
x
2

)
+ a′xz + c′(yz′ − y′z)

}
p,

φ2 = α′xy′′ + a′xz′′ + α′b′
(
x
2

)
z′′ + c′yz′′,

φ3 = c′yz′′.

A comparison of the members of the above equations give six congruences
between the primed and unprimed constants and the nine indeterminates.

θ1 ≡ βy′ (mod p),(I)

φ1 ≡ αx+ βx′p (mod p2),(II)
θ2 ≡ by′ (mod p),(III)
φ2 ≡ ax+ bx′ (mod p),(IV)
θ3 ≡ dy′ (mod p),(V)
φ3 ≡ cx+ dx′ (mod p).(VI)

The necessary and sufficient condition for the simple isomorphism of the two
groups G and G′ is, that the above congruences shall be consistent and admit
of solution for the nine indeterminates, with the condition that x, y′ and z′′ be
prime to p.

For convenience in the discussion of these congruences, the groups are divided
into six sets, and each set is subdivided into 16 cases.

The group G′ is taken from the simplest case, and we associate with this
case all cases, which contain a group G, simply isomorphic with G′. Then a
single group G, in the selected case, simply isomorphic with G′, is chosen as a
type.

G′ is then taken from the simplest of the remaining cases and we proceed as
above until all the cases are exhausted.

Let κ = κ1p
κ2 , and dv1[κ1, p] = 1 (κ = a, b, α, β, c, and d).

The six sets are given in the table below.

I.
α2 d2 α2 d2

A 0 0 D 2 0
B 0 1 E 1 1
C 1 0 F 2 1

The subdivision into cases and the results are given in Table II.
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II.
a2 b2 β2 c2 A B C D E F

1 1 1 1 1
2 0 1 1 1 A1 B1 C2 E2

3 1 0 1 1 A1 C1 D1

4 1 1 0 1 A1 C1 D1 E4

5 1 1 1 0 A1 C1 D1 E5

6 0 0 1 1 A1 B3 C2 C2 E3 F3

7 0 1 0 1 A1 B4 C2 C2 E7

8 0 1 1 0 A1 B5 C2 C2 E5 E5

9 1 0 0 1 A1 B3 C1 D1 E3 F3

10 1 0 1 0 A1 C2 C2 E10

11 1 1 0 0 A1 * C1 E11

12 0 0 0 1 A1 B3 C2 C2 * E3

13 0 0 1 0 A1 B10 * * E10 E10

14 0 1 0 0 A1 B11 C2 C2 E11 E11

15 1 0 0 0 A1 B10 C2 C2 E10 E10

16 0 0 0 0 A1 B10 * * E10 E10

The groups marked (*) divide into two or three parts.

Let ad − bc = θ1p
θ2 , α1d − βc = φ1p

φ2 and α1b − aβ = χ1p
χ2 with θ1, φ1,

and χ1 prime to p.

III.
* θ2 φ2 χ2 * θ2 φ2 χ2

C11 1 D1 D13 1 D1

C11 0 C1 D13 0 C2

C13 1 C1 D16 1 C1

C13 0 C2 D16 0 C2

C16 1 1 D1 E12 1 F3

C16 1 0 C1 E12 0 E3

C16 0 C2
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6. Types.

The type groups are given by equations (15), (16) and (17) with the values
of the constants given in Table IV.

IV.
a b α β c d a b α β c d

A1 0 0 1 0 0 1 E1 0 0 p 0 0 0
B1 0 0 1 0 0 0 E2 1 0 p 0 0 0
B3 0 1 1 0 0 0 E3 0 1 p 0 0 0
B4 0 0 1 1 0 0 E4 0 0 p 1 0 0
B5 0 0 1 0 1 0 E5 0 0 p 0 1 0
B10 0 1 1 0 κ 0 E7 1 0 p 1 0 0
B11 0 0 1 1 1 0 E10 0 1 p 0 κ 0
C1 0 0 p 0 0 1 E11 0 0 p 1 1 0
C2 ω 0 p 0 0 1 F1 0 0 0 0 0 0
D1 0 0 0 0 0 1 F3 0 1 0 0 0 0

κ = 1, and a non-residue (mod p),

ω = 1, 2, · · · , p − 1.

The congruences for three of these cases are completely analyzed as illustra-
tions of the methods used.

B10.

The congruences for this case have the special forms.

b′xz′ ≡ βy′ (mod p),(I)
α′y′ ≡ α (mod p),(II)
b′xz′′ ≡ by′ (mod p),(III)

α′xy′′ + α′b′
(
x
2

)
z′′ + c′yz′′ ≡ ax+ bx′ (mod p),(IV)
d ≡ 0 (mod p),(V)

c′y′z′′ ≡ cx (mod p).(VI)

Since z′ is unrestricted (I) gives β ≡ 0 or 6≡ 0 (mod p).
From (II) since y′ 6≡ 0, α 6≡ 0 (mod p).
From (III) since x, y′, z′′ 6≡ 0, b 6≡ 0 (mod p).
In (IV) b 6≡ 0 and x′ is contained in this congruence alone, and, therefore, a

may be taken ≡ 0 or 6≡ 0 (mod p).
(V) gives d ≡ 0 (mod p) and (VI), c 6≡ 0 (mod p).
Elimination of y′ between (III) and (VI) gives

b′c′z′′2 ≡ bc (mod p)
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so that bc is a quadratic residue or non-residue (mod p) according as b′c′ is a
residue or non-residue.

The types are given by placing a = 0, b = 1, α = 1, β = 0, c = κ, and d = 0
where κ has the two values, 1 and a representative non-residue of p.

C2.

The congruences for this case are

d′(yz′ − y′z) ≡ βy′ (mod p),(I)
α′1xy

′ + a′xz′ ≡ α1x+ βx′ (mod p),(II)
d′yz′′ ≡ by′ (mod p),(III)

a′xz′′ ≡ ax+ bx′ (mod p),(IV)
d′z′′ ≡ d (mod p),(V)

cx+ dx′ ≡ 0 (mod p).(VI)

Since z appears in (I) alone, β can be either ≡ 0 or 6≡ 0 (mod p). (II)
is linear in z′ and, therefore, α ≡ 0 or 6≡ 0 (mod p), (III) is linear in y and,
therefore, b ≡ 0 or 6≡ 0.

Elimination of x′ and z′′ between (IV), (V), and (VI) gives

a′d2 ≡ d′(ad− bc) (mod p).

Since z′′ is prime to p, (V) gives d 6≡ 0 (mod p), so that ad − bc 6≡ 0 (mod p).
We may place b = 0, α = p, β = 0, c = 0, d = 1, then a will take the values
1, 2, 3, · · · , p− 1 giving p− 1 types.

D1.

The congruences for this case are

d′(yz′ − y′z) ≡ βy′ (mod p),(I)
α1x+ βx′ ≡ 0 (mod p),(II)

d′yz′′ ≡ by′ (mod p),(III)
ax+ bx′ ≡ 0 (mod p),(IV)

d′z′′ ≡ d (mod p),(V)
cx+ dx′ ≡ 0 (mod p).(VI)

z is contained in (I) alone, and therefore β ≡ 0 or 6≡ 0 (mod p).
(III) is linear in y, and b ≡ 0 or 6≡ 0 (mod p).
(V) gives d 6≡ 0 (mod p).
Elimination of x′ between (II) and (VI) gives α1d − βc ≡ 0 (mod p), and

between (IV) and (VI) gives ad − bc ≡ 0 (mod p). The type group is derived
by placing a = 0, b = 0, α = 0, β = 0, c = 0 and d = 1.
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Section 2.

1. Groups with dependent generators. In this section, G is generated by Q1

and P where

(1) Qp2

1 = Php2
.

There is in G, a subgroup H1, of order pm−2, which contains {P} self-conjugate-
ly.20 H1 either contains, or does not contain Qp

1. We will consider the second
possibility in the present section, reserving the first for the next section.

2. Determination of H1. H1 is generated by P and some other operator R1

of G. Rp
1 is contained in {P}. Let

(2) Rp
1 = P lp.

Since {P} is self-conjugate in H1,21

(3) R−1
1 P R1 = P 1+kpm−4

Denoting Ra
1 P

bRc
1 P

d · · · by the symbol [a, b, c, d, · · · ] we derive from (3)

[−y, x, y] = [0, x(1 + kypm−4)] (m > 4),(4)

and

[y, x]s =
[
sy, x

{
s+ k

(
s
2

)
ypm−4

}]
(5)

Placing s = p and y = 1 in (5) we have, from (2)

[R1 P
x]p = Rp

1P
xp = P (l+x)p.

Choosing x so that

x+ l ≡ 0 (mod pm−4),

R = R1P
x is an operator of order p, which will be used in the place of R1, and

H = {R,P} with Rp = 1.

3. Determination of H2. We will now use the symbol [a, b, c, d, e, f, · · · ] to
denote Qa

1 R
b P cQd

1 R
e P f · · · .

H1 and Q1 generate G and all the operations of G are given by [x, y, z]
(z = 0, 1, 2, · · · , p2 − 1; y = 0, 1, 2, · · · , p − 1; x = 0, 1, 2, · · · , pm−3 − 1),
since these are pm in number and are all distinct. There is in G a subgroup H2

of order pm−1 which contains H1 self-conjugately. H2 is generated by H1 and
20Burnside, Theory of Groups, Art. 54, p. 64.
21Burnside, Theory of Groups, Art. 56, p. 66.
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some operator [z, y, x] of G. Qz
1 is then in H2 and H2 is the subgroup {Qp

1,H1}.
Hence,

Q−p
1 P Qp

1 = RβPα1 ,(6)

Q−p
1 P Qp

1 = Rb1P apm−4
.(7)

To determine α1 and β we find from (6), (5) and (7)

[−p2, 0, 1, p2] =
[
0,
αp

1 − bp1
α1 − b1

β, αp
1

{
1 +

βk

2
αp

1 − 1
α1 − 1

pm−4
}

+ aβ
{
p
αp−1

1

α1 − b1
− αp

1 − bp1
(α1 − b1)2

}
pm−4

]
.

By (1)

Q−p2

1 P Qp2

1 = P,

and, therefore,

αp
1 − bp1
α1 − b1

β ≡ 0 (mod p),

αp
1 ≡ 1 (mod pm−4), and α1 ≡ 1 (mod pm−5) (m > 5).

Let α1 = 1 + α2p
m−5 and equation (6) is replaced by

(8) Q−p
1 P Qp

1 = RβP 1+α2pm−5
.

To find a and b1 we obtain from (7), (8) and (5)

[−p2, 1, 0, p2] =
[
0, bp1, a

bp1 − 1
b1 − 1

pm−4
]
.

By (1) and (4)

Q−p2

1 RQp2

1 = P−lp2
RP lp2

= R,

and, hence,

bp1 ≡ 1 (mod p), a
bp1 − 1
b1 − 1

≡ 0 (mod p),

therefore b1 = 1.
Substituting b1 = 1 and α1 = 1 +α2p

m−5 in the congruence determining α1

we obtain (1 + α2p
m−5)p ≡ 1 (mod pm−3), which gives α2 ≡ 0 (mod p).

Let α2 = αp and equations (8) and (7) are now replaced by

Qp
1 P Q

p
1 = RβP 1+αpm−4

,(9)

Q−p
1 RQp

1 = RP apm−4
.(10)
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From these we derive

[−yp, 0, x, yp] =
[
0, βxy, x+

{
αxy + aβx

(
y
2

)
+ βk

(
x
2

)
y
}
pm−4

]
,(11)

[−yp, x, 0, yp] = [0, x, axypm−4].(12)

A continued use of (4), (11), and (12) yields

(13) [zp, y, x]s = [szp, sy + Us, sx+ Vsp
m−4]

where

Us = β
(

s
2

)
xz,

Vs =
(

s
2

){
αxz + βk

(
s
2

)
z + kxy + ayz

}
+ βk

(
s
3

)
x2z

+
1
2
aβ
{ 1

3!
s(s− 1)(2s− 1)z2 −

(
s
2

)
z
}
.

4. Determination of G.
Since H2 is self-conjugate in G1 we have

Q−1
1 P Q1 = Qγp

1 RδP ε1 ,(14)

Q−1
1 RQ1 = Qcp

1 R
dP epm−4

.(15)

From (14), (15) and (13)

[−p, 0, 1, p] = [λp, µ, εp1 + vpm−4]

and by (9) and (1)

λp ≡ 0 (mod p2), εp1 + νpm−4 + λhp ≡ 1 + αpm−4 (mod pm−3),

from which

εp1 ≡ 1 (mod p2), and ε1 ≡ 1 (mod p) (m > 5).

Let ε1 = 1 + ε2p and equation (14) is replaced by

(16) Q−1
1 P Q1 = Qγp

1 RδP 1+ε2p.

From (15), (16), and (13)

[−p, 1, 0, p] =
[
c
dp − 1
d− 1

p, dp, Kpm−4

]
where

K =
dp − 1
d− 1

e+
p−1∑
1

acd
dn(dn − 1)

2
.
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By (10)

dp ≡ 1 (mod p), and d = 1

and by (1)

chp2 ≡ apm−4 (mod pm−3).

Equation (15) is now replaced by

(17) Q−1
1 RQ1 = Qcp

1 RP
epm−4

.

A combination of (17), (16) and (13) gives

[−p, 0, 1, p] =
[{
γ

(1 + ε2p)p − 1
ε2p2

+ cδ
p− 1

2
}
p2, 0, (1 + ε2p)p

]
.

By (9){
γ

(1 + ε2p)p − 1
ε2p2

+ cδ
p− 1

2

}
hp2 + (1 + ε2p)p ≡ 1 + αpm−4 (mod pm−3),

β ≡ 0 (mod p).
A reduction of the first congruence gives

(1 + ε2p)p − 1
εp2

{
ε2 + γh

}
p2 ≡

{
α− aδ

p− 1
2

}
pm−4 (mod pm−3)

and, since

(1 + ε2p)p − 1
ε2p2

≡ 1 (mod p), (ε2 + γh)p2 ≡ 0 (mod pm−4)

and

(18) (ε2 + γh)p2 ≡
(
α+

aδ

2
)
pm−4 (mod pm−3).

From (17), (16), (13) and (18)

[−y, x, 0, y] =
[
cxyp, x,

{
exy + ac

(
x
2

)
y
}
pm−4

]
,(19)

[−y, 0, x, y] =
[
x
{
γy + cδ

(
y
2

)}
p, δxy, x(1 + ε2yp) + θpm−4

]
(20)

where

θ =
{
eδx+ aδγx+ ε2

(
α+

aδ

2

)
x
}(

y
2

)
+

1
2
ac
{ 1

3!
y(y − 1)(2y − 1)δ2 −

(
y
2

)
δ
}

+
{
αγy + δky + aδxy2 + (acδ2y + acδ)

(
y
2

)}(
x
2

)
.
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From (19), (20), (4) and (18)

{Q1 P
x}p2

= Qp2

1 P
xp2

= P (h+x)p2
.

If x be so chosen that

h+ x ≡ 0 (mod pm−5)

Q = Q1 P
x is an operator of order p2 which will be used in place Q1 and

Qp2
= 1.

Placing h = 0 in (18) we get

ε2p
2 ≡ 0 (mod pm−4).

Let ε2 = εpm−6 and equation (16) is replaced by

(21) Q−1 P Q = QγpRδP 1+εpm−5

The congruence

apm−4 ≡ chp2 (mod pm−3)

becomes

apm−4 ≡ 0 (mod pm−3), and a ≡ 0 (mod p).

Equations (19) and (20) are replaced by

[−y, x, 0, y] = [cxyp, x, exypm−4](22)

[−y, 0, x, y] =
[{
γy + cδ

(
y
2

)}
xp, δxy, x(1 + εypm−5) + θpm−4

]
(23)

where
θ = eδx

(
y
2

)
+
{
αγy + δky + αcδ

(
y
2

)}(
x
2

)
.

A formula for any power of an operation of G is derived from (4), (22) and
(23)

(24) [z, y, x]s = [sz + Usp, sy + Vs, sx+Wsp
m−5]

where

Us =
(

s
2

){
γxz + cyz

}
+

1
2
cδx
{ 1

3!
s(s− 1)(2s− 1)z2 −

(
s
2

)
z
}
,

Vs = δ
(

s
2

)
xz,

Ws =
(

s
2

){
εxz +

[
(aγ + δk)

(
x
2

)
z + eyz + kxy

]
p
}

+
(

s
3

){
εγx+ εy + δkx

}
xzp+

1
2
cδε
{1

2
(s− 1)z2 − z

}(
s
3

)
xp

+
1
2
{
δex+ αcδ

(
x
2

)}{ 1
3!
s(s− 1)(2s− 1)z2 −

(
s
2

)
z
}
p.
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5. Transformations of the groups. Placing y = 1 and x = −1 in (22) we
obtain (17) in the form

R−1QR = Q1−cpP−epm−4
.

A comparison of the generational equations of the present section with those of
Section 1, shows that groups, in which δ ≡ 0 (mod p), are simply isomorphic
with those in Section 1, so we need consider only those cases in which δ 6≡ 0
(mod p).

All groups of this section are given by

(25), (26), (27) G :


R−1 P R = P 1+kpm−4

,

Q−1 P Q = QγpRδP 1+εpm−5
,

Q−1RQ = QcpRP εpm−4
.

Rp = 1, Qp2
= 1, and P pm−3

= 1, (k, γ, c, e = 0, 1, 2, · · · , p − 1; δ =
1, 2, · · · , p− 1; ε = 0, 1, 2, · · · , p2 − 1).

Not all these groups, however, are distinct. Suppose that G and G′ of the
above set are simply isomorphic and that the correspondence is given by

C =
[
R, Q, P
R′

1, Q′
1, P ′

1

]
.

Since Rp = 1, Qp2
= 1, and P pm−3

= 1, R′p
1 = 1, Q′p2

1 = 1 and P ′pm−3

1 .
The forms of these operators are then

P ′
1 = Q′zR′yP ′x,

R′
1 = Q′z′pR′y′P ′x′pm−4

,

Q′
1 = Q′z′′R′y′′P ′x′′pm−5

,

where dv[x, p] = 1.
Since R is not contained in {P}, and Qp is not contained in {R,P} R′

1 is
not contained in {P ′

1}, and Q′p
1 is not contained in {R′

1, P
′
1}.

Let

R′s′
1 = P ′spm−4

1 .

This becomes in terms of Q′, R′ and P ′

[s′z′p, s′y′, s′x′pm−4] = [0, 0, sxpm−4],

and

s′y′ ≡ 0 (mod p), s′z′ ≡ 0 (mod p).
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Either y′ or z′ is prime to p or s′ may be taken = 1.
Let

Q′s′′p
1 = R′s′

1 P
′spm−4

1 ,

and in terms of Q′, R′ and P ′

[s′′z′′p, 0, s′′x′′pm−4] = [s′z′p, s′y′, (s′x′ + sx)pm−4],

from which

s′′z′′ ≡ s′z′ (mod p), and s′y′ ≡ 0 (mod p).

Eliminating s′ we find

s′′y′z′′ ≡ 0 (mod p),

dv[y′z′′, p] = 1 or s′′ may be taken = 1. We have then z′′, y′ and x prime to p.
Since R, Q and P satisfy equations (25), (26) and (27) R′

1, Q
′
1 and P ′

1 do
also. These become in terms of R′, Q′ and P ′.

[z + Φ′
1p, y, x+ Θ′

1p
m−4] = [z, y, x(1 + kpm−4)],

[z + Φ′
2p, y + δ′xz′′, x+ Θ′

2p
m−5] = [z + Φ2p, y + δy′, x+ Θ2p

m−5],

[(z′ + Φ′
3)p, y

′, Θ′
3p

m−4] = [(z′ + Φ3)p, y, Θ′
3p

m−4],

where

Φ′
1 = −c′yz′, Θ′

1 = ε′xz′ + k′xy′ − e′y′z,

Φ′
2 =

{
γ′z′′ + c′δ′

(
z
2

)}
x+ c′(yz′′ − y′′z),

Θ′
2 = ε′xz′′ +

{(
x
2

)[
α′γ′z′′ + α′c′δ′

(
z′′

2

)
+ δ′k′z′′

]
+ δ′e′x

(
z′′

2

)
+ e′(yz′′ − y′′z) + k′xy′′

}
p,

Φ2 = γz′′ + δz′ + c′δy′z, Θ2 ≡ εx+ (γx′′ + δx+ e′δy′z)p,
Φ′

3 = c′y′z′′, Θ′
3 = e′y′z′′, Φ3 = cz′′, Θ3 = ex+ cx′′.

A comparison of the members of these equations give seven congruences

Φ′
1 ≡ 0 (mod p),(I)

Θ′
1 ≡ kx (mod p),(II)

Φ′
2 ≡ Φ2 (mod p),(III)

δ′xz′′ ≡ δy′ (mod p),(IV)

Θ′
2 ≡ Θ2 (mod p2),(V)

Φ′
3 ≡ cz′′ (mod p),(VI)

Θ′
3 ≡ Θ3 (mod p).(VII)
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The necessary and sufficient condition for the simple isomorphism of G and
G′ is, that these congruences be consistent and admit of solution for the nine
indeterminants with x, y′, and z′′ prime to p.

Let κ = κ1p
κ2 , dv[κ1, p] = 1 (κ = k, δ, γ, ε, c, e).

The groups are divided into three parts and each part is subdivided into 16
cases.

The methods used in discussing the congruences are the same as those used
in Section 1.

6. Reduction to types. The three parts are given by

I.
ε2 δ2

A 0 0
B 1 0
C 2 0

The subdivision into cases and the results of the discussion of the congruences
are given in Table II.

II.
k2 γ2 c2 e2 A B C

1 1 1 1 1 B1

2 0 1 1 1 B2

3 1 0 1 1 A2 B1 B1

4 1 1 0 1 B4

5 1 1 1 0 B5

6 0 0 1 1 * B2 B2

7 0 1 0 1 A4 B7

8 0 1 1 0 A5 B5 B5

9 1 0 0 1 A4 B4 B4

10 1 0 1 0 A5 B5 B5

11 1 1 0 0 A4 B4 B4

12 0 0 0 1 A4 B7 B7

13 0 0 1 0 A5 B5 B5

14 0 1 0 0 A4 B7 B7

15 1 0 0 0 A4 B4 B4

16 0 0 0 0 A4 B7 B7

A6 divides into two parts.
The groups of A6 in which δk+ εγ ≡ 0 (mod p) are simply isomorphic with

the groups of A1 and those in which δk+ εγ 6≡ 0 (mod p) are simply isomorphic
with the groups of A2. The types are given by equations (25), (26) and (27)
where the constants have the values given in Table III.
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III.
k δ γ ε c e

A1 0 1 0 1 0 0
A2 1 1 0 1 0 0
A4 0 1 0 1 1 0
A5 0 1 0 1 0 ω
B1 0 1 0 p 0 0
B2 1 1 0 p 0 0
B4 0 1 0 p 1 0
B5 0 1 0 p 0 κ
B7 1 1 0 p ω 0

κ = 1, and a non-residue (mod p),

ω = 1, 2, · · · , p − 1.

A detailed analysis of several cases is given below, as a general illustration
of the methods used.

A1.

The special forms of the congruences for this case are

ε′xz′ ≡ kx (mod p),(II)
γz′′ + δz′ ≡ 0 (mod p),(III)

δ′xz′′ ≡ δy′ (mod p),(IV)
ε′xz′′ ≡ εx (mod p),(V)
cz′′ ≡ 0 (mod p),(VI)
ex ≡ 0 (mod p).(VII)

Congruence (IV) gives δ 6≡ 0 (mod p), from (II) k can be ≡ 0 or 6≡ 0 (mod p),
(III) gives γ ≡ 0 or 6≡ 0, (V) gives ε 6≡ 0, (VI) and (VII) give c ≡ e ≡ 0 (mod p).
Elimination of x, z′ and z′′ between (II), (III) and (V) gives δk+γε ≡ 0 (mod p).
If k ≡ 0, then γ ≡ 0 (mod p) and if k 6≡ 0, then γ 6≡ 0 (mod p).

A2.

The congruences for this case are

ε′xz′ + k′xy′ ≡ kx (mod p),(II)
γx′′ + δz′ ≡ 0 (mod p),(III)

δ′xz′′ ≡ δy′ (mod p),(IV)
ε′xz′′ ≡ εx (mod p),(V)
cz′′ ≡ 0 (mod p),(VI)
ex ≡ 0 (mod p).(VII)
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Congruence (III) gives γ ≡ 0 or 6≡ 0, (IV) gives δ 6≡ 0, (V) ε 6≡ 0, (VI) and (VII)
give c ≡ e ≡ 0 (mod p). Elimination of x, z′, and z′′ between (II), (III) and
(V) gives

δk + γε ≡ k′δy′ (mod p)

from which

δk + γε 6≡ 0 (mod p).

If k ≡ 0, then γ 6≡ 0, and if γ ≡ 0 then k 6≡ 0 (mod p).
Both γ and k can be 6≡ 0 (mod p) provided the above condition is fulfilled.

A5.

The congruences for this case are

ε′xz′ − e′y′z ≡ kx (mod p),(II)
γz′′ + δz′ ≡ 0 (mod p),(III)

δ′xz′′ ≡ δy′ (mod p),(IV)
ε′xz′′ ≡ ex (mod p),(V)
cz′′ ≡ 0 (mod p),(VI)

e′y′z′′ ≡ ex (mod p).(VII)

(II) and (III) are linear in z and z′ so k and γ are ≡ or 6≡ 0 (mod p) indepen-
dently, (IV) gives δ 6≡ 0, (V) give ε 6≡ 0, (VI) c ≡ 0, and (VII) e 6≡ 0.

Elimination between (IV), (V), and (VII) gives

δ′e′ε2 ≡ δeε′2 (mod p).

The types are derived by placing ε = δ = 1, and e = 1, 2, · · · , p− 1.

B5.

The congruences for this case are

−e′y′z ≡ kx (mod p),(II)
γz′′ + δz′ ≡ 0 (mod p),(III)

δ′xz′′ ≡ δy′ (mod p),(IV)

ε′1xz
′′ + δ′e′x

(
z′′

2

)
+ e′yz′′ ≡ e1x+ γx′′ + δx′ (mod p),(V)

cz′′ ≡ 0 (mod p),(VI)
e′y′z′′ ≡ ex (mod p).(VII)

(II), and (III) being linear in z and z′ give k ≡ 0 or 6≡ 0, and γ ≡ 0 or 6≡ 0
(mod p), (IV) gives δ 6≡ 0, (V) being linear in x′ gives ε1 ≡ 0 or 6≡ 0 (mod p),
(VI) gives c ≡ 0 and (VII) e 6≡ 0.
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Elimination of x and y′ from (IV) and (VII) gives

δ′e′z′′2 ≡ δe (mod p).

δe is a quadratic residue or non-residue (mod p) according as δ′e′ is a residue
or non-residue.

The two types are given by placing δ = 1, and e = 1 and a non-residue
(mod p).

Section 3.

1. Groups with dependent generators continued. As in Section 2, G is here
generated by Q1 and P , where

Qp2

1 = Php2
.

Qp
1 is contained in the subgroup H1 of order pm−2, H1 = {Qp

1, P}.

2. Determination of H1. Since {P} is self-conjugate in H1

(1) Q−p
1 P Qp

1 = P 1+kpm−4
.

Denoting Qa
1 P

bQc
1 P

d · · · by the symbol [a, b, c, d, · · · ], we have from (1)

(2) [−yp, x, yp] = [0, x(1 + kypm−4)] (m > 4).

Repeated multiplication with (2) gives

(3) [yp, x]s =
[
syp, x

{
s+ k

(
s
2

)
ypm−4

}]
.

3. Determination of H2. There is a subgroup H2 of order pm−1 which
contains H1 self-conjugately.22 H2 is generated by H1 and some operator R1 of
G. Rp

1 is contained in H1, in fact in {P}, since if Rp2

1 is the first power of R1 in
{P}, then H2 = {R1, P}, which case was treated in Section 1.

(4) Rp
1 = P lp.

Since H1 is self-conjugate in H2

R−1
1 P R1 = Qβp

1 Pα1 ,(5)

R−1
1 QpR1 = Qbp

1 P
α1p.(6)

Using the symbol [a, b, c, d, e, f, · · · ] to denote Ra
1 Q

b
1 P

cRd
1 Q

e
1 P

f · · · , we
have from (5), (6) and (3)

(7) [−p, 0, 1, p] = [0, βNp, αp
1 +Mp],

22Burnside, Theory of Groups, Art. 54, p. 64.
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and by (4)

αp
1 ≡ 1 (mod p), and α1 ≡ 1 (mod p).

Let α1 = 1 + α2p and (5) is now replaced by

(8) R−1
1 P R1 = Qβp

1 P 1+α2p.

From (6), (8) and (3)

[−p, p, 0, p] =
[
0, bpp, a1

bp − 1
b− 1

p+ a1Up
2
]
,

and by (4) and (2)

R−p
1 Qp

1 R
p
1 = Qp

1

and therefore bp ≡ 1 (mod p), and b = 1. Placing b = 1 in the above equation
the exponent of P takes the form

a1p
2(1 + U ′p) = a1

{1 + (α2 + βh)p}p − 1
(α2 + βh)p2

p2

from which

a1p
2(1 + U ′p) ≡ 0 (mod pm−3)

or

a1 ≡ 0 (mod pm−5) (m > 5).

Let a1 = apm−5 and (6) is replaced by

(9) R−1
1 Qp

1 R1 = Qp
1 P

apm−4
.

(7) now has the form

[−p, 0, 1, p] = [0, βNp, (1 + α2p)p +Mp2],

where

N = p and M = βh

{
(1 + α2p)p − 1

α2p2
− 1
}
,

from which

(1 + α2p)p +
(1 + α2p)p − 1

α2p2
βhp2 ≡ 1 (mod pm−3)
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or

(1 + α2p)p − 1
α2p2

{α2 + βh}p2 ≡ 0 (mod pm−3)

and since

(1 + α2p)p − 1
α2p2

≡ 1 (mod p)

(10) (α2 + βh)p2 ≡ 0 (mod pm−3).

From (8), (9), (10) and (3)

[−y, 0, x, y] = [0, βxyp, x(1 + α2yp) + θpm−4],(11)

[−y, xp, 0, y] = [0, xp, axypm−4],(12)

where
θ = aβx

(
y
2

)
+ βk

(
x
2

)
y.

By continued use of (11), (12), (2) and (10)

(13) [z, yp, x]s = [sz, (sy + Us)p, xs+ Vsp],

where

Us = β
(

s
2

)
xz

Vs =
(

s
2

){
α2xz +

[
ayz + kxy + βk

(
x
2

)
z
]
pm−5

}
+
{
β
(

s
3

)
x2z +

1
2
aβ
[ 1
3!
s(s− 1)(2s− 1)z2 −

(
s
2

)
z
]
x
}
pm−5.

Placing in this y = 0, z = 1 and s = p,23

(R1 P
x)p = Rp

1 P
xp = P (x+l)p,

determine x so that

x+ l ≡ 0 (mod pm−4),

then R = R1P
x is an operator of order p which will be used in the place of R1,

Rp = 1.

4. Determination of G. Since H2 is self-conjugate in G

Q−1
1 P Q1 = Rγ Qδp

1 P ε1 ,(14)

Q−1
1 RQ1 = RcQdp

1 P e1p.(15)

23Terms of the form (Ax2 + Bx)pm−4 in the exponent of P for p = 3 and m > 5 do not
alter the result.
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From (15)

(RcQdp
1 P e1p)p = 1,

by (13)

Qdp2

1 P e1p2
= P (e1+dh)p2

= 1,

and

(16) (e1 + dh)p2 ≡ 0 (mod pm−3).

From (14), (15) and (13)

(17) [0, −p, 1, 0, p] = [L, Mp, εp1 +Np].

By (1)
εp1 ≡ 1 (mod p), and ε1 ≡ 1 (mod p).

Let ε1 = 1 + ε2p and (14) is replaced by

(18) Q−1
1 P Q1 = Rγ Qδp

1 P 1+ε2p.

From (15), (18), and (13)

[0, −p, 0, 1, p] =
[
cp,

cp − 1
c− 1

dp, Kp

]
.

Placing x = 1 and y = −1 in (12) we have

(19) [0, −p, 0, 1, p] = [1, 0, −apm−4],

and therefore cp ≡ 1 (mod p), and c = 1. (15) is now replaced by

(20) Q−1
1 RQ1 = RQdp

1 P e1p.

Substituting 1 + ε2p for ε1 and 1 for c in (17) gives, by (16)

[0, −p, 1, p] = [0, Mp2, (1 + ε2p)p +Np2],

where

M = γd
p− 1

2
+ δ

(1 + ε2p)p − 1
ε2p2

and

N =
e1γ

(ε2 + δh)p2

{
[1 + (ε2 + δh)p]p − 1

(ε2 + δh)p
− p

}
.
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By (1)

(1 + ε2p)p + (N +Mh)p2 ≡ 1 + kpm−4 (mod pm−3),

or reducing

ψ(ε2 + δh)p2 ≡ kpm−4 (mod pm−3),

where

ψ =
(1 + ε2p)p − 1

ε2p2
+N − e1γ

p− 1
2

.

Since
ψ = 1 (mod p).

(21) (ε2 + δh)p2 ≡ kpm−4 (mod pm−3).

From (18), (20), (13), (16) and (21)

[0, −y, x, 0, y] = [γxy, θ1p, x+ φ1p],(22)
[0, −y, 0, x, y] = [x, dxyp, φ2p],(23)

where

θ1 = dγx
(
y
2

)
+ δxy + βγ

(
x
2

)
y,

φ1 = ε2xy + α2γ
(
x
2

)
y + e1γ

(
y
2

)
x+

{
x
(
y
2

)
(ε2k + δγ)

+
1
2
ad

[
1
3!
y(y − 1)(2y − 1)γ2 − y

2
γ

]
x+ aγ2dx

1
3!
y(y + 1)(y − 1)

+ e1γk
(
y
3

)
x+

1
2
aβ

[
1
3!
x(x− 1)(2x− 1)γ2y2 −

(
x
2

)
γy

]
+
(
x
2

)
(a+ k)

[
dy
(
y
2

)
+ δy

]
+ βγ

(
x
3

)}
pm−5,

φ2 = e1xy +
{
e1k
(
y
2

)
+ ad

(
x
2

)
y
}
pm−5.

Placing x = 1 and y = p in (23) and by (16)

Q−p
1 RQp

1 = R,

and by (19)

a ≡ 0 (mod p).

A continued multiplication, with (11), (22), and (23), gives

(Q1 P
x)p2

= Qp2

1 P xp2
= P (x+l)p2

.
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Let x be so chosen that

(x+ l) ≡ 0 (mod pm−5),

then Q = Q1 P
x is an operator of order p2 which will be used in place of Q1,

Qp2
= 1 and

h ≡ 0 (mod pm−5).

From (21), (10) and (16)

ε2p
2 ≡ kpm−4, α2p

2 ≡ 0 and e1p
2 ≡ 0 (mod pm−3).

Let ε2 = εpm−6, α2 = αpm−5 and e1 = epm−5. Then equations (18), (20) and
(8) are replaced by

G :


Q−1 P Q = Rγ Qδp P 1+εpm−5

,

Q−1RQ = RQdp P epm−4
,

R−1 P R = Qβp P 1+αpm−4
,

(24), (25), (26)

Rp = 1, Qp2
= 1, P pm−3

= 1.

(11), (22) and (23) are replaced by

[−y, 0, x, y] = [0, βxyp, x+ φpm−4],(27)

[0, −y, x, 0, y] = [γxy, θ1p, x+ φ1p
m−5],(28)

[0, −y, 0, x, y] = [x, dxyp, φ2p
m−4],(29)

where

φ = αxy + βk
(
x
2

)
y, θ1 = dγ

(
y
2

)
x+ δxy + βγ

(
x
2

)
y,

φ1 = exy +
{
eγx

(
y
2

)
+
(
x
2

) (
αγy + dγk

(
y
2

)
+ δky

)
+ βγy

(
x
3

)}
p,

φ2 = exy.

A formula for a general power of any operator of G is derived from (27), (28)
and (29)

(30) [0, z, 0, y, 0, z]s = [0, sz + Usp, 0, sy + Vs, 0, sx+Wsp
m−5],

where

Us =
(

s
2

) {
δxz + dyz + βxy + βγ

(
x
2

)
z
}

+
1
2
dx

{
1
3!
s(s− 1)(2s− 1)z2 −

(
s
2

)
z

}
x+ βγ

(
s
2

)
x2z,

Vs = γ
(

s
2

)
xz,
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Ws =
(

s
2

) {
εxz +

[
axy + eyz + (βky + αβγ + δkz)

(
x
2

)]
p
}

+
(

s
3

) {
αγx2z + dkxyz + δkx2z + βkx2y + 2βγk

(
x
2

)
xz
}
p

+ βyk
(

s
4

)
x3zp+

1
2

{
1
3!
s(s− 1)(2s− 1)z2 − s

2
z

}{
eγx+ dγk

(
x
2

)}
p

+
1
2
dγk

[
1
2
(s− 1)z2 − z

] (
s
3

)
x2.

A comparison of the generational equations of the present section with those of
Sections 1 and 2, shows that, γ ≡ 0 (mod p) gives groups simply isomorphic
with those of Section 1, while β ≡ 0 (mod p), groups simply isomorphic with
those of Section 2 and we need consider only the groups in which β and γ are
prime to p.

5. Transformation of the groups. All groups of this section are given
by equations (24), (25), and (26), where γ, β = 1, 2, · · · , p − 1; α, δ, d, e =
0, 1, 2, · · · , p− 1; and ε = 0, 1, 2, · · · , p2 − 1.

Not all of these, however are distinct. Suppose that G is simply isomorphic
with G′ and that the correspondence is given by

C =
[
R, Q, P
R′

1, Q′
1, P ′

1

]
.

An inspection of (30) gives

R′
1 = Q′z′′pR′y′′ P ′x′′pm−4

,

Q′
1 = Q′z′ R′y′ P ′x′pm−5

,

P ′
1 = Q′z R′y P ′x,

with dv[x, p] = 1. Since Qp is not in {P}, and R is not in {Qp, P}, Q′p
1 is not

in {P ′
1} and R′

1 is not in {Q′p
1, P

′
1}. Let

Q′s′p
1 = P ′spm−4

1 .

This is in terms of R′, Q′, and P ′,

[0, s′z′p, s′x′pm−4] = [0, 0, sxpm−4].

From which

s′z′p ≡ 0 (mod p2),

and z′ must be prime to p, since otherwise s′ can = 1. Let

R′s′′
1 = Q′s′p

1 P ′spm−4

1 ,
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or in terms of R′, Q′, and P ′,

[s′′y′′, s′′z′′p, s′′x′′pm−4] = [0, s′z′p, (sx+ s′x′)pm−4]

and

s′′z′′ ≡ s′z′ (mod p), s′′y′′ ≡ 0 (mod p),

and y′′ is prime to p, since otherwise s′′ can = 1. Since R, Q, and P satisfy
equations (24), (25) and (26), R′

1, Q
′
1, and P ′

1 must also satisfy them. These
become when reduced in terms of R′, Q′ and P ′

[0, z + θ′1p, 0, y + γ′xz′, 0, x+ ψ′
1p

m−5]

= [0, z + θ1p, 0, y + γy′′, 0, x+ ψ1p
m−5],

[0, (z′′ + θ′2)p, 0, y′′, 0, (x′′ + ψ2)pm−4]

= [0, (z′′ + θ2)p, 0, y′′, 0, (x′′ + ψ2)pm−4],

[0, z + θ′3p, 0, y, 0, x+ ψ′
3p

m−4] = [0, z + θ3p, 0, y, 0, x+ ψ3p
m−4],

where

θ′1 = d′(yz′ − y′z) + x
{
d′γ′

(
z′

2

)
+ δ′z′ + β′y′

}
+ β′γ′

(
x
2

)
z′,

θ1 = γz′′ + δz′ + d′γy′′z,

ψ′
1 = ε′xz′ +

{
e′γ′x

(
z′

2

)
+
(
x
2

) [
α′γ′z′ + γ′ε′d′k′

(
z′

2

)
+ δ′εk′z′ + β′k′y′

]
+ β′γ′

(
x
3

)
z′ + e′(yz′ − y′z) + α′xy′

}
p,

ψ1 = εx+ {δx′ + γx′′ + e′γy′′z}p,
θ′2 = d′y′′z′, θ2 = dz′, ψ′

2 = e′y′′z, ψ2 = dx′ + ex,

θ′3 = β′xy′′ − d′y′′z, θ3 = βz′,

ψ3 = ε′xz′′ − e′y′′z + α′xy′′ + β′ε′
(
x
2

)
y′′, ψ3 = αx+ βx′.

A comparison of the two sides of these equations give seven congruences

θ′1 ≡ θ1 (mod p),(I)
γ′xz′ ≡ γy′′ (mod p),(II)

ψ′
1 ≡ ψ1 (mod p2),(III)
θ′2 ≡ θ2 (mod p),(IV)
ψ′

2 ≡ ψ2 (mod p),(V)
θ′3 ≡ θ3 (mod p),(VI)
ψ′

3 ≡ ψ3 (mod p).(VII)

(VI) is linear in z provided d′ 6≡ 0 (mod p) and z may be so determined that
β ≡ 0 (mod p) and therefore all groups in which d′ 6≡ 0 (mod p) are simply
isomorphic with groups in Section 2.
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Consequently we need only consider groups in which d′ ≡ 0 (mod p).
As before we take for G′ the simplest case and associate with it all simply

isomorphic groups G. We then take as G′ the simplest case left and proceed as
above.

Let κ = κ1p
κ2 where dv[κ1, p] = 1, (κ = α, β, γ, δ, ε, d, e).

For convenience the groups are divided into three sets and each set is sub-
divided into eight cases.

The sets are given by

A : ε2 = 0, β2 = 0, γ2 = 0,
B : ε2 = 1, β2 = 0, γ2 = 0,
C : ε2 = 2, β2 = 0, γ2 = 0.

The subdivision into cases and results of the discussion are given in Table I.

I.
δ2 e2 α2 A B C

1 1 1 1 B1

2 0 1 1 A1 B1 B1

3 1 0 1 B3

4 1 1 0 A1 B1 B1

5 0 0 1 A3 B3 B3

6 0 1 0 A1 B1 B1

7 1 0 0 A3 B3 B3

8 0 0 0 A3 B3 B3

6. Reduction to types. The types of this section are given by equations (24),
(25) and (26) with α = 0, β = 1, λ = 1 or a quadratic non-residue (mod p),
δ ≡ 0; ε = l, e = 0, 1, 2, · · · , p− 1; and ε = p, e = 0, 1, or a non-residue (mod p),
2p+ 6 in all.

The special forms of the congruences for these cases are given below.

A1.

β′γ′
(
x
2

)
z′ + β′xy′ ≡ γz′′ + δz′ (mod p),(I)

γ′xz′ ≡ γy′′ (mod p),(II)
ε′xz′ ≡ εx (mod p),(III)
dz′ ≡ 0 (mod p),(IV)
ex ≡ 0 (mod p),(V)

β′xy′′ ≡ βz′ (mod p),(VI)

ε′xz′′ + β′ε′
(
x
2

)
y′ ≡ αx+ βx′ (mod p).(VII)

(I) is linear in z′′ and δ ≡ 0 or 6≡ 0, (II) gives γ 6≡ 0, (III) ε 6≡ 0, (IV) and
(V) d ≡ e ≡ 0, (VI) β 6≡ 0, (VII) is linear in x′ and α ≡ 0 or 6≡ 0 (mod p).
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Elimination of y′′ and z′ between (II) and (VI) gives

β′γ′x2 ≡ βγ (mod p)

and βγ is a residue or non-residue (mod p) according as β′γ′ is a residue or
non-residue.

A3.

β′γ′
(
x
2

)
z′ + β′xy′ ≡ γz′′ + δz′ (mod p),(I)

γ′xz′ ≡ γy′′ (mod p),(II)
ε′z′ ≡ ε (mod p),(III)
d ≡ 0 (mod p),(IV)

e′y′′z′ ≡ ex (mod p),(V)
β′xy′′ ≡ βz′ (mod p),(VI)

ε′xz′′ − e′y′′z + β′ε′
(
x
2

)
y′ ≡ αx+ βx′ (mod p).(VII)

(I) is linear in z′′ and δ ≡ 0 or 6≡ 0. (II) gives γ 6≡ 0, (III) ε 6≡ 0, (V) e 6≡ 0
and (VI) β 6≡ 0. (VII) is linear in x′ and α ≡ 0 or 6≡ 0 (mod p).

Elimination between (II) and (VI) gives

β′γ′x2 ≡ βγ (mod p),

and between (II), (III), and (IV) gives

ε′2γe ≡ ε2γ′e′ (mod p).

βγ is a residue, or non-residue, according as β′γ′ is or is not, and if γ and ε
are fixed, e must take the (p− 1) values 1, 2, · · · , p− 1.

B1.

β′γ′
(
x
2

)
z′ + β′xy′ ≡ γz′′ + δz′ (mod p),(I)

γ′xz′ ≡ γy′′ (mod p),(II)

ε′1xz
′ + β′xz′

(
x
3

)
≡ ε1x+ δx′ + γx′′ (mod p),(III)

ex ≡ 0 (mod p),(IV)
β′xy′′ ≡ βz′ (mod p),(VI)

αx+ βx′ ≡ 0 (mod p).(VII)

(I) gives δ ≡ 0 or 6≡ 0, (II) γ 6≡ 0, (III) is linear in x′′ and gives ε1 ≡ 0 or
6≡ 0, (V) e = 0, (VI) β 6≡ 0 and (VII) is linear in x′ and gives α ≡ 0 or 6≡ 0.

Elimination between (II) and (VI) gives

β′γ′x2 ≡ βγ (mod p).
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B3.

β′γ′
(
x
2

)
z′ + β′xy′ ≡ γβ′′ + δz′ (mod p),(I)

γ′xz′ ≡ γy′ (mod p),(II)

ε′1xz
′ + e′γ′x

(
z′

2

)
+ β′γ′

(
x
3

)
+ e′(yz′ − y′z)
≡ ε1x+ δx′ + γx′′ + e′γzy′′ (mod p),(III)

e′y′′z′ ≡ ex (mod p).(V)
β′xy′′ ≡ βz′ (mod p),(VI)
−e′y′′z ≡ αx+ βx′ (mod p).(VII)

(I) gives δ ≡ 0 or 6≡ 0, (II) γ 6≡ 0, (III) is linear in x′′ and gives ε1 ≡ 0 or 6≡ 0,
(V) e 6≡ 0, (VI) β 6≡ 0, (VII) is linear in x′ and gives α ≡ 0 or 6≡ 0 (mod p).
Elimination of y′′ and z′ between (II) and (VI) gives

β′γ′x2 ≡ βγ (mod p),

and between (V) and (VI) gives

β′e′y′′2 ≡ βe (mod p)

and βγ and βe are residues or non-residues, independently, according as β′γ′

and β′e′ are residues or non-residues.

Class III.

1. General relations. In this class, the pth power of every operator of G is
contained in {P}. There is in G a subgroup H1 of order pm−2, which contains
{P} self-conjugately.24

2. Determination of H1. H1 is generated by P and some operator Q1 of G.

Qp
1 = Php.

Denoting Qa
1 P

bQc
1 P

d · · · by the symbol [a, b, c, d, · · · ], all operators of H1 are
included in the set [y, x]; (y = 0, 1, 2, · · · , p− 1, x = 0, 1, 2, · · · , pm−3 − 1).

Since {P} is self-conjugate in H1
25

Q−1
1 P Q1 = P 1+kpm−4

.(1)

24Burnside, Theory of Groups, Art. 54, p. 64.
25Ibid., Art. 56, p. 66.
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Hence

[−y, x, y] = [0, x(1 + kypm−4)] (m > 4).(2)

and

[y, x]s =
[
sy, x

{
s+ ky

(
s
2

)
pm−4

}]
.(3)

Placing y = 1 and s = p in (3), we have,

[Q1 P
x]p = Qp

1 P
xp = P (x+h)p

and if x be so chosen that

(x+ h) ≡ 0 (mod pm−4),

Q = Q1 P
x will be an operator of order p which will be used in place of Q1,

Qp = 1.

3. Determination of H2. There is in G a subgroup H2 of order pm−1, which
contains H1 self-conjugately. H2 is generated by H1, and some operator R1 of
G.

Rp
1 = P lp.

We will now use the symbol [a, b, c, d, e, f, · · · ] to denote Ra
1 Q

b P c Rd
1 Q

e

P f · · · .
The operations of H2 are given by [z, y, x]; (z, y = 0, 1, · · · , p − 1; x =

0, 1, · · · , pm−3 − 1). Since H1 is self-conjugate in H2

R−1
1 P R1 = Qβ

1P
α1 ,(4)

R−1
1 QR1 = Qb1

1 P
αpm−4

.(5)

From (4), (5) and (3)

[−p, 0, 1, p] =
[
0,
αp

1 − bp1
α1 − b1

β, αp
1 + θpm−4

]
= [0, 0, 1],

where

θ =
αp

1βk

2
αp

1 − 1
α1 − 1

+ aβ

{
αp

1 − 1
α1 − b1

p− αp
1 − bp1

(α1 − b1)2

}
.

Hence

(6)
αp

1 − bp1
α1 − b1

β ≡ 0 (mod p), αp
1 + θpm−4 ≡ 1 (mod pm−3),

and αp
1 ≡ 1 (mod pm−4), or α1 ≡ 1 (mod pm−5) (m > 5), α1 = 1+α2p

m−5.
Equation (4) is replaced by

(7) R−1
1 P R1 = QβP 1+α2pm−5

,
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From (5), (7) and (3).

[−p, 1, 0, p] =
[
0, bp1, a

bp1 − 1
b− 1

pm−4

]
.

Placing x = lp and y = 1 in (2) we have Q−1P lpQ = P lp, and

bp1 ≡ 1 (mod p), a
bp1 − 1
b1 − 1

≡ 0 (mod p).

Therefore, b1 = 1.
Substituting 1 for b1 and 1 + α2p

m−5 for α1 in congruence (6) we find

(1 + α2p
m−5)p ≡ 1 (mod pm−3), or α2 ≡ 0 (mod p).

Let α2 = αp and equations (7) and (5) are replaced by

R−1
1 P R1 = QβP 1+αpm−4

,(8)

R−1
1 QR1 = QPαpm−4

.(9)

From (8), (9) and (3)

[−y, 0, x, y] =
[
0, βxy, x+

{
αxy + aβx

(
y
2

)
+ βky

(
x
2

)}
pm−4

]
,(10)

[−y, x, 0, y] = [0, x, axypm−4].(11)

From (2), (10), and (11)

(12) [z, y, x]s = [sz, sy + Us, sx+ Vsp
m−4],

where

Us = β
(

s
2

)
xz,

Vs =
(

s
2

) {
αxz + kxy + ayz + βk

(
x
2

)
z
}

+ βk
(

s
3

)
x2z +

1
2
aβ
(

s
2

){ 1
3!

(2s− 1)z − 1
}
xz.

Placing z = 1, y = 0, and s = p in (12)26

[R1 P
x]p = Rp

1 P
xp = P (x+l)p.

If x be so chosen that

x+ l ≡ 0 (mod pm−4)

then R = R1P
x is an operator of order p which will be used in place of R1, and

Rp = 1.
26The terms of the form (Ax + Bx2)pm−4 which appear in the exponent of P for p = 3 do

not alter the conclusion for m > 5.
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4. Determination of G. G is generated by H2 and some operation S1.

Sp
1 = Pλp.

Denoting Sa
1 R

bQc P d · · · by the symbol [a, b, c, d, · · · ] all the operators of G
are given by

[v, z, y, x]; (v, z, y = 0, 1, · · · , p− 1;x = 0, 1, · · · , pm−3 − 1).

Since H2 is self-conjugate in G

S−1
1 P S1 = RγQsP ε1 ,(13)

S−1
1 QS1 = RcQdP epm−4

,(14)

S1RS1 = RfQgP jpm−4
.(15)

From (13), (14), (15), and (12)

[−p, 0, 0, 1, p] = [0, L, M, εp1 +Npm−4] = [0, 0, 0, 1]

and

εp1 ≡ 1 (mod pm−4) or ε1 ≡ 1 (mod pm−5) (m > 5).

Let ε1 = 1 + ε2p
m−5. Equation (13) is now replaced by

(16) S−1
1 P S1 = RγQδP 1+ε2pm−5

.

If λ = 0 (mod p) and λ = λ′p,

[1, 0, 0, 1]p =
[
p, 0, 0, p+ ε

(
p
2

)
pm−5 +Wpm−4

]
= [0, 0, 0, p+ λ′p2 +W ′pm−4]

and for m > 5 S1P is of order pm−3. We will take this in place of S1 and assume
dv[λ, p] = 1.

Spm−3

1 = 1.

There is in G a subgroup H ′
1 of order pm−2 which contains {S1} self-conjugately.

H ′
1 = {S1, S

v
1 R

z Qy P x} and the operator T = Rz Qy P x is in H ′
1.

There are two cases for discussion.
1◦. Where x is prime to p.
T is an operator of H2 of order pm−3 and will be taken as P . Then

H ′
1 = {S1, P}.

Equation (16) becomes

S−1
1 P S1 = P 1+εpm−4

.
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There is in G a subgroup H ′
2 of order pm−1 which contains H ′

1 self-conjugately.

H ′
2 = {H ′

1, S
v′

1 Rz′ Qy′ P x′}.

T ′ = Rz′Qy′ is in H ′
2 and also in H2 and is taken as Q, since {P, T ′} is of order

pm−2.
H ′

2 = {H ′
1, Q} = {S1,H1} and in this case c may be taken ≡ 0 (mod p).

2◦. Where x = x1p. P p is in {S1} since λ is prime to p. In the present case
Rz Qy is in H ′

1 and also in H2. If z 6≡ 0 (mod p) take Rz Qy as R; if z ≡ 0
(mod p) take it as Q.

H ′
1 = {S1, R} or {S1, Q},

and

R−1 S1R = S1+k′pm−4

1 or Q−1 S1Q = S1+k′′pm−4

1 .

On rearranging these take the forms

S−1
1 RS1 = RSnpm−4

1 = RP jpm−4
or S−1

1 QS1 = QSn′pm−4

1 = QP epm−4
,

and either c or g may be taken ≡ 0 (mod p),

(17) cg ≡ 0 (mod p).

From (14), (15), (16), (12) and (17)

[−p, 0, 1, 0, p] =
[
0, c

dp − fp

d− f
, dp, Wpm−4

]
.

Place x = λp and y = 1 in (12)

Q−1 PλpQ = Pλp or Sp
1 QS

p
1 = Q,

and

dp ≡ 1 (mod p), d = 1.

Equation (14) is replaced by

(18) S−1
1 QS1 = RcQP epm−4

.

From (15), (18), (17), (16) and (12)

[−p, 1, 0, 0, p] =
[
0, fp,

dp − fp

d− f
g,W ′pm−4

]
.

Placing x = λp, y = 1 in (10)

R−1 PλpR = Pλp,
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and fp ≡ 1 (mod p), f = 1. Equation (15) is replaced by

(19) S−1
1 RS1 = RQg P jpm−4

.

From (16), (18), (19) and (12)

S−p
1 P Sp

1 = P 1+ε2pm−4
= P

and ε2 ≡ 0 (mod p). Let ε2 = εp and (16) is replaced by

(20) S−1
1 P S1 = Rγ Qδ P 1+εpm−4

.

Transforming both sides of (1), (8) and (9) by S1

S−1
1 Q−1S1 · S−1

1 PS1 · S−1
1 QS1 = S−1

1 P 1+kpm−4
S1,

S−1
1 R−1S1 · S−1

1 PS1 · S−1
1 RS1 = S−1

1 QβS1 · S−1
1 P 1+αpm−4

S1,

S−1
1 R−1S1 · S−1

1 QS1 · S−1
1 RS1 = S−1

1 QS1 · S−1
1 P apm−4

S1.

Reducing these by (18), (19), (20) and (12) and rearranging[
0, γ, δ + βc, 1 +

{
ε+ αc+ k + acδ + aβ

(
c
2

)
− aγ

}
pm−4

]
= [0, γ, δ, 1 + (ε+ k)pm−4].

[0, γ, β + δ, 1 + {kg + ε+ α+ aδ − aγg}pm−4]

=
[
0, γ + βc, β + δ, 1 +

{
ε+ α+ βe+ α

(
β
2

)
c+ aβγ

}
pm−4

]
,

[0, c, 1, (e+ a)pm−4] = [0, c, 1, (e+ a)pm−4].

The first gives

βc ≡ 0 (mod p),(21)
ac+ acδ − aγ ≡ 0 (mod p).(22)

Multiplying this last by g

agγ ≡ 0 (mod p).(23)

From the second equation above

gk + αδ ≡ βe+ aβγ (mod p).(24)

Multiplying by c

acδ ≡ 0 (mod p).(25)

These relations among the constants must be satisfied in order that our
equations should define a group.
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From (20), (19), (18) and (12)

[−y, 0, 0, x, y] = [0, γxy + χ1(x, y), δxy + φ1(x, y), x+ Θ1(x, y)pm−4],(26)

[−y, 0, x, 0, y] = [0, cxy, x, Θ2(x, y)pm−4],(27)

[−y, x, 0, 0, y] = [0, x, gxy, Θ3(x, y)pm−4],(28)

where

χ1(x, y) = cδx
(
y
2

)
,

φ1(x, y) = γgx
(
y
2

)
+ βγ

(
x
2

)
y,

Θ1(x, y) = εxy +
(
y
2

) [
γjx+ eδx+ aδγ + (αγ + kδ)

(
x
2

)]
+
(
y
3

)
[cδj + egγ]x+

(
x
2

)
[αγy + δky + aδγy2] + βγk

(
x
3

)
y2,

Θ2(x, y) = exy + cjx
(
y
2

)
+ ac

(
x
2

)
y,

Θ3(x, y) = jxy + egx
(
y
2

)
+ ag

(
x
2

)
y.

Let a general power of any operator be

(29) [v, z, y, x]s = [sv, sz + Us, sy + Vs, sx+Wsp
m−4].

Multiplying both sides by [v, z, y, x] and reducing by (2), (10), (11), (26),
(27) and (28), we find

Us+1 ≡ Us + (cy + γx)sv + cδ
(
sv
2

)
x (mod p),

Vs+1 ≡ Vs + (gz + δx)sv + γg
(
sv
2

)
x+ βγ

(
x
2

)
sv + β(sz + Us)x (mod p),

Ws+1 ≡Ws + Θ1(x, sv) +
{
ey + jz + aγxy + ac

(
y
2

)
+ ag

(
z
2

)}
sv

+
{
αx+ βk

(
x
2

)
+ ay + aδsx+ αgsvz

}
sz + ksxy

+
(
sv
2

)
{cjy + egz}+ Us

{
αx+ βk

(
x
2

)
+ ay + a(δx+ gz)sv

}
+ aβ

(
sz+Us

2

)
x+ kVsx (mod p).

From (29)

U1 ≡ 0, V1 ≡ 0, W1 ≡ 0 (mod p).

A continued use of the above congruences give

Us ≡ (cy + γx)
(

s
2

)
v +

1
2
cδxv{1

3
(2s− 1)v − 1}

(
s
2

)
(mod p),

Vs ≡ {[gz + δx+ βγ
(
x
2

)
v + βxz}

(
s
2

)
+

1
2
γgxv{1

3
(2s− 1)v − 1}

(
s
2

)
+ βγ

(
s
3

)
x2v (mod p),
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Ws ≡
(

s
2

){
εxv + egv + (αγ + δkv + βkz)

(
s
2

)
+ βγ k

(
x
3

)
v + ac

(
y
2

)
v

+ jvz + ag
(
z
2

)
v + αxz + kxy + aγxyv + ayz

}
+
(

s
3

){
αcxyv

+ αγx2v + 2βγk
(
x
2

)
xv + gkxzv + δkx2v + βkx2z + acvy2

+ aγxvy
}

+ βkγ
(

s
4

)
x3v +

(
s
2

)2s− 1
3

{
aδγ

(
x
2

)
v2 + aδxzv

+ agvz2
}

+
1
2
v
(

s
2

){1
3
(2s− 1)v − 1

}{
γjx+ eδx+ aδγx

+ αcδ
(
x
2

)
+ γgk

(
x
2

)
+ cjy + egz

}
+

1
6
(

s
2

){(
s
2

)
v2 − (2s− 1)v

+ 2
}{
cδjx+ egγx

}
v +

1
2
(

s
3

){1
2
(s− 1)v − 1

}{
αcδ

+ γgk
}
x2v +

1
2
aβx

(
s
2

){1
3
(2s− 1)z − 1

}
z

+
1
2
aδγx2v

(
s
3

)1
2
(3s− 1) (mod p)

Placing v = 1, z = y = s = p in (29)27

[S1 P
x]p = Sp

1P
xp = P (λ+x)p (p > 3).

If x be so chosen that

x+ λ ≡ 0 (mod pm−4).

S = S1 P
x is an operator of order p and is taken in place of S1.

Sp = 1.

The substitution of S for S1 leaves congruence (17) invariant.

5. Transformation of the groups. All groups of this class are given by

(30) G :



Q−1P Q = P 1+kpm−4
,

R−1P R = Qβ P 1+αpm−4
,

R−1QR = QP apm−4
,

S−1P S = Rγ QδP 1+εpm−4
,

S−1QS = RcQP epm−4
,

S−1RS = RQg P jpm−4
,

with
P pm−3

= 1, Qp = Rp = Sp = 1,
27For p = 3 and cδ ≡ γg ≡ βγ ≡ 0 (mod p) there are terms of the form (A + Bx + Cx2 +

Dx3)pm−4 in the exponent of P . For m > 5 these do not vitiate our conclusion. For p = 3
and cδ, γg, or βγ prime to p, [S1 P x]p is not contained in {P} and the groups defined belong
to Class II.
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(k, β, α, a, γ, δ, ε, c, e, g, j = 0, 1, 2, · · · , p− 1).
These constants are however subject to conditions (17), (21), (22), (23), (24)

and (25). Not all these groups are distinct. Suppose that G and G′ of the above
set are simply isomorphic and that the correspondence is given by

C =
[
S, R, Q, P
S′1, R′

1, Q′
1, P ′

1

]
.

Inspection of (29) gives

S′1 = S′v
′′′
R′z′′′Q′y′′′P ′x′′′pm−4

,

R′
1 = S′v

′′
R′z′′Q′y′′P ′x′′pm−4

,

Q′
1 = S′v

′
R′z′Q′y′P ′x′pm−4

,

P ′
1 = S′vR′zQ′yP ′x,

in which x and one out of each of the sets v′, z′, y′, x′; v′′, z′′, y′′, x′′; v′′′, z′′′,
y′′′, x′′′ are prime to p.

Since S, R, Q, and P satisfy equations (30), S′1, R
′
1, Q

′
1 and P ′

1 also satisfy
them. Substituting these operators and reducing in terms of S′, R′, Q′, and P ′

we get the six equations

(31) [V ′
κ, Z

′
κ, Y

′
κ, X

′
κ] = [Vκ, Zκ, Yκ, Xκ] (κ = 1, 2, 3, 4, 5, 6),

which give the following twenty-four congruences

(32)


V ′

κ ≡ Vκ (mod p),
Z ′

κ ≡ Zκ (mod p),
Y ′

κ ≡ Yκ (mod p),
X ′

κ ≡ Xκ (mod pm−3),

where

V ′
1 = v, V1 = v,

Z ′
1 = Z + c′(yv′ − y′v) + γ′xv′ + cδx

(
v′

2

)
, Z1 = z,

Y ′
1 = y + g′(zv′ − z′v) + δ′xv′ + γ′g′x

(
v
2

)
+ β′xz′, Y1 = y,

X ′
1 = x+

{
ε′xv′ + (γ′j′x+ e′δ′x+ a′δ′γ′x)

(
v′

2

)
+ c′δ′j′

(
v′

3

)
+ (α′γ′v′ + δ′k′v′

+ a′δ′γ′v2 + β′k′z′)
(
x
2

)
+ j′(zv′ − z′v) + e′g′[z

(
v′

2

)
− z′

(
v
2

)
]

+ a′g′[
(
z
2

)
v′ +

(
z′

2

)
v − zz′v] + e′(yv′ − y′v) + c′j′[y

(
v′

2

)
− y′

(
v
2

)
]

+ a′c′[
(
y
2

)
v′ + v

(−y′

2

)
− yy′v] + a′(yz′ − y′z)− a′β′xz′2 + α′xz′

+ α′β′x
(
z′

2

)
+ a′γ′x(y − y′)v′ + k′xy′

}
pm−4,

X1 = x+ kxpm−4,
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V ′
2 = v, V2 = v + βv′,

Z ′
2 = z + c′(yv′′ − y′′v) + γ′xv′′ + e′δ′

(
v′′

2

)
, Z2 = z + βz′ + c′βy′v,

Y ′
2 = y + g′(zv′′ − z′′v) + δ′xv′′ + γ′g′x

(
v′′

2

)
+ β′γ′

(
x
2

)
v′′ + β′xz′′,

Y2 = y + βy′ + g′βz′v,

X ′
2 = x+

{
Θ′

1(x, v
′′) + j′(zv′′ − z′′v) + e′g′[z

(
v′′

2

)
− z′′

(
v
2

)
] + a′g′[

(
x
2

)
v′′

+
(−z′′

2

)
v − zz′′v] + e′(yv′′ − y′′v) + c′j′[y

(
v′′

2

)
− y′′

(
v
2

)
] + a′c′[

(
y
2

)
v′′

+
(−y′′

2

)
v − yy′′v′′] + a′g′(zv′′ − z′′v)z′′ + a′(yz′′ − y′′z) + a′δ′v′′z′′

+ a′γ′(y − y′′)v′′x+ α′xz′′ + a′β′x
(
z′′

2

)
+ β′k′

(
x
2

)
z′′ + k′xy′′

}
pm−4,

X2 = x+
{
αx+ βx′ + a′

(
β
2

)
y′z′ + e′βvy′ + (c′j′β + e′g′βz′)

(
v
2

)
+ a′c′

(
βy′

2

)
v + j′βvz′ + a′g′

(
βz′

2

)
+ a′β(g′z′v + y′)z

}
pm−4,

V ′
3 = v′, V3 = v′,

Z ′
3 = z′ + c′(y′v′′ − y′′v′), Z3 = z′,

Y ′
3 = y′ + g′(z′v′′ − z′′v′), Y3 = y′,

X ′
3 =

{
x′ + j′(z′v′′ − z′′v′) + e′g′[

(
v′′

2

)
z′ −

(
v′

2

)
z′′] + a′g′[

(
z′

2

)
v′′ +

(−z′′

2

)
v′

− z′z′′v′] + e′(y′v′′ − y′′v′) + c′j′[y′
(
v′′

2

)
− y′′

(
v′

2

)
] + a′c′[

(
y′

2

)
v′′ +

(−y′′

2

)
v′

− y′′y′v′′] + a′(y′z′′ − y′′z′)
}
pm−4,

X4 = (x′ + a′x)pm−4,

V ′
4 = v, V4 = v + γv′′ + δv′,

Z ′
4 = z + c′(yv′′′ − y′′′v) + γ′xv′′′ + c′δ′x

(
v′′′

2

)
,

Z4 = z + γz′′ + δz′ + c′[
(
γ
2

)
v′′y′′ +

(
δ
2

)
v′y′] + c′(γy′′ + δy′)v + c′γδy′′v,

Y ′
4 = y + g′(zv′′′ − z′′′v) + δ′xv′′′ + γ′g′x

(
v′′′

2

)
+ β′γ′

(
x
2

)
v′′′ + β′xz′′′,

Y4 = y + γy′′ + δy′ + g′[
(
γ
2

)
v′′z′′ +

(
δ
2

)
v′z′] + g′(γz′′ + δz′)v + g′δγv′z′′,

X ′
4 = x+

{
Θ′

1(x, v
′′′) + j′(zv′′′ − z′′′v) + e′g′[

(
v′′′

2

)
z −

(
v
2

)
z′′′] + a′g′

[(
z
2

)
v′′′

+
(−z′′′

2

)
v − zz′′′v

]
+ e′(yv′′′ − y′′′v) + c′j′[y

(
v′′′

2

)
− y′′′

(
v
2

)
]

+ a′c′[
(
y
2

)
v′′′ +

(−y′′′

2

)
v − yy′′′v′′′] + a′g′(v′′′z − vz′′′)z′′′

+ a′(yz′′′ − y′′′z) + a′δ′xz′′′v′′′ + a′γ′x(y − y′′′)v′′′ + α′xz′′′

+ a′β′x
(
z′′′

2

)
+ β′k′z′′′

(
x
2

)
+ k′xy′′′

}
pm−4.
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X4 = x+
{
εx+ δx′ + γx′′ +

(
γ
2

)
[a′c′

(
y′′

2

)
v′′ + a′y′′z′′ + e′v′′y′′ + j′v′′z′′

+ a′g′
(
z′′

2

)
v′′ + (c′j′v′′y′′ + e′g′v′′z′′)(v + δv′) + a′(z + δz′)v′′z′′

+
2γ − 1

3
a′g′v′′z′′2 +

1
2
[
1
3
(2γ − 1)v′′ − 1](c′j′y′′ + e′g′z′′)v′′]

+
(
γ
3

)
a′c′v′′y′′ +

(
δ
2

)
[a′c′

(
y′

2

)
v′ + a′y′z′ + e′v′y′ + j′v′z′

+ a′g′
(
z′

2

)
v′ + j′c′vv′y′ + e′g′vv′z′ + a′g′v′zz′ + a′c′γy′y′′v′

+
2δ − 1

3
a′g′v′z′2 +

1
2
{1
3
(2δ − 1)v′ − 1}(c′j′y′ + e′g′z′)]

+
(
δ
3

)
a′c′v′y′2 + (v + δv′)[j′γz′′ +

(
γz′′

2

)
a′g′ + e′γy′′ +

(
γy′′

2

)
a′c′

+ a′g′(z + δz′)] +
(
v+δv′

2

)
[e′g′γz′′ + c′j′γy′′] + δ[(e′g′z′

+ c′j′y′)
(
v
2

)
+ e′vy′ + j′z′ + a′zy + a′g′vzz′ + a′γz′y′′ + a′c′γvy′y′′]

+ a′g′
(
δz′

2

)
v + a′c′

(
δy′

2

)
v + a′γzy′′

}
pm−4,

V ′
5 = v′, V5 = v′ + cv′′,

Z ′
5 = z′ + c′(y′v′′′ − y′′′v′), Z5 = z′ + cz′′ + c′cy′′v,

Y ′
5 = y′ + g′(z′v′′′ − z′′′v′), Y5 = y′ + cy′′ + g′cv′z′′,

X ′
5 =

{
x′ + j′(z′v′′′ − z′′′v′) + e′g′[

(
v′′′

2

)
z′ −

(
v′

2

)
z′′′] + a′g′[

(
z′

2

)
v′′′

+
(−z′′′

2

)
v′ − z′z′′′v′] + c′(y′v′′′ − y′′′v′) + c′j′[y′

(
δ′′′

2

)
− y′′′

(
v′

2

)
]

+ a′c′[
(
y′

2

)
v′′′ +

(−y′′′

2

)
v′ − y′y′′′v′′′] + a′(y′z′′′ − y′′′z′)

}
pm−4,

X5 =
{
x′ + ex+ cx′′ + a′

(
c
2

)
y′′z′′ + j′cv′z′′ + (e′g′cz′′ + c′cj′y′′)

(
v′

2

)
+ e′cy′′v

+ a′cy′′z′ + a′g′z′v′ + a′g′
(
cz′′

2

)
+ a′c′

(
cy′′

2

)}
pm−4,

V ′
6 = v′′, V6 = v′′ + gv′,

Z ′
6 = z′′ + c′(y′′v′′′ − y′′′v′′), Z6 = z′′ + gz′,

Y ′
6 = y′′ + g′(z′′v′′′ − z′′′v′′), Y6 = y′′ + gy′,

X ′
6 =

{
x′′ + j′(z′′v′′′ − z′′′v′′) + e′g′[

(
v′′′

2

)
z′′ −

(
v′′

2

)
z′′′] + a′g′

[(
z′′

2

)
v′′′

+
(−z′′′

2

)
v′′ − z′′z′′′v′′

]
+ e′(y′′v′′′ − y′′′v′′) + c′j′[y′′

(
v′′′

2

)
− y′′′

(
v′′

2

)
]

+ a′c′[
(
y′′

2

)
v′′′ +

(−y′′′

2

)
v′′ − y′′y′′′v′′′] + a′(y′′z′′′ − y′′′z′′)

}
pm−4,

X6 = {x′′ + jx+ gx′ + a′gy′′z′}pm−4.

The necessary and sufficient condition for the simple isomorphism of the
two groups G and G′ is that congruences (32) shall be consistent and admit of
solution subject to conditions derived below.

6. Conditions of transformation. Since Q is not contained in {P}, R is
not contained in {Q,P}, and S is not contained in {R,Q,P}, then Q′

1 is not
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contained in {P ′
1}, R′

1 is not contained in {Q′
1, P

′
1}, and S′1 is not contained in

{R′
1, Q

′
1, P

′
1}.

Let
Q′s′

1 = P ′spm−4

1 .

This equation becomes in terms of S′, R′, Q′ and P ′

[s′v′, s′z′ + c′
(
s′

2

)
v′y′, s′y′ + g′

(
s′

2

)
v′z′, Dpm−4] = [0, 0, 0, sxpm−4],

and

s′v′ ≡ s′z′ ≡ s′y′ ≡ 0 (mod p).

At least one of the three quantities v′, z′ or y′ is prime to p, since otherwise
s′ may be taken = 1.

Let
R′s′′

1 = Q′s′
1 P

′spm−4

1 ,

or in terms of S′, R′, Q′ and P ′

[s′′v′′, s′′z′′ + c′
(
s′′

2

)
v′′y′′, s′′y′′ + g′

(
s′′

2

)
v′′z′′, Epm−4]

= [s′v′, s′z′ + c′
(
s′

2

)
v′y′, s′y′ + g′

(
s′

2

)
v′z′, E1p

m−4],

and

s′′v′′ ≡ s′v′ (mod p),

s′′z′′ + c′
(
s′′

2

)
v′′y′′ ≡ s′z′ + c′

(
s′

2

)
v′y′ (mod p),

s′′y′′ + g′
(
s′′

2

)
v′′z′′ ≡ s′y′ + g′

(
s′

2

)
v′z′ (mod p).

Since c′g′ ≡ 0 (mod p), suppose g′ ≡ 0 (mod p). Elimination of s′ between
the last two give by means of the congruence Z ′

3 ≡ Z3 (mod p),

s′′{2(y′z′′ − y′′z′) + c′y′y′′(v′ − v′′)} ≡ 0 (mod p),

between the first two

s′′{2(v′z′′ − v′′z′) + c′v′v′′(y′ − y′′)} ≡ 0 (mod p),

and between the first and last

s′′(y′v′′ − y′′v′) ≡ 0 (mod p).

At least one of the three above coefficients of s′′ is prime to p, since otherwise
s′′ may be taken = 1.

Let
S′

s′′′

1 = R′s′′
1 Q′s′

1 P
′spm−4

1
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or, in terms of S′, R′, Q′, and P ′

[s′′′v′′′, s′′′z′′′ + c′
(
s′′′

2

)
v′′′y′′′, s′′′y′′′ + g′

(
s′′′

2

)
v′′′z′′′, E2p

m−4]

= [s′′v′′ + s′v′, s′′z′′ + s′z′ + c′{
(
s′′

2

)
v′′y′′ +

(
s′

2

)
v′y′ + s′s′′y′′v′},

s′′y′′ + s′y′ + g′{
(
s′′

2

)
v′′z′′ +

(
s′

2

)
v′z′ + s′s′′v′z′′}, E3p

m−4]

and

s′′′v′′′ ≡ s′′v′′ + s′v′ (mod p),

s′′′z′′′ + c′
(
s′′′

2

)
v′′′y′′′

≡ s′′z′′ + s′z′ + c′{
(
s′′

2

)
v′′y′′ +

(
s′

2

)
v′y′ + s′s′′y′′v′} (mod p),

s′′′y′′′ + g′
(
s′′′

2

)
v′′′z′′′

≡ s′′y′′ + s′y′ + g′{
(
s′′

2

)
v′′z′′ +

(
s′

2

)
v′z′ + s′s′′z′′v′} (mod p).

If g′ ≡ 0 and c′ 6≡ 0 (mod p) the congruence Z ′
3 ≡ Z3 (mod p) gives

(y′v′′ − y′′v′) ≡ 0 (mod p).

Elimination in this case of s′′ between the first and last congruences gives

s′′′(y′′v′′′ − y′′′v′′) ≡ 0 (mod p).

Elimination of s′′ between the first and second, and between the second and
third, followed by elimination of s′ between the two results, gives

s′′′
(
z′′2 − c′y′′z′′v′ +

c′2

4
y′′v′′

)
(y′v′′′ − y′′′v′) ≡ 0 (mod p).

Either (y′′v′′′ − y′′′v′′), or (y′v′′′ − y′′′v′) is prime to p, since otherwise s′′′

may be taken = 1.
A similar set of conditions holds for c′ ≡ 0 and g′ 6≡ 0 (mod p).
When c′ ≡ g′ ≡ 0 (mod p) elimination of s′ and s′′ between the three

congruences gives

s′′′∆ ≡ s′′′

∣∣∣∣∣∣
v′ v′′ v′′′

y′ y′′ y′′′

z′ z′′ z′′′

∣∣∣∣∣∣ ≡ 0 (mod p)

and ∆ is prime to p, since otherwise s′′′ may be taken = 1.
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7. Reduction to types. In the discussion of congruences (32), the group G′

is taken from the simplest case and we associate with it all simply isomorphic
groups G.

I.
A. B.

a2 β2 c2 g2 γ2 δ2 k2 α2 ε2 e2 j2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 2 0 1 1 1 1
3 0 0 1 1 1 1 3 1 0 1 1 1
4 0 0 1 1 1 0 4 1 1 0 1 1
5 0 0 1 0 1 1 5 1 1 1 0 1
6 0 0 1 0 1 0 6 1 1 1 1 0
7 0 1 0 1 1 1 7 0 0 1 1 1
8 0 1 0 1 0 1 8 0 1 0 1 1
9 0 1 1 0 1 1 9 0 1 1 0 1

10 0 1 1 0 1 0 10 0 1 1 1 0
11 1 0 1 1 1 1 11 1 0 0 1 1
12 1 0 1 0 1 1 12 1 0 1 0 1
13 1 0 1 1 0 1 13 1 0 1 1 0
14 1 0 1 1 1 0 14 1 1 0 0 1
15 1 0 1 0 0 1 15 1 1 0 1 0
16 1 0 1 0 1 0 16 1 1 1 0 0
17 1 0 1 1 0 0 17 0 0 0 1 1
18 1 0 1 0 0 0 18 0 0 1 0 1
19 1 1 0 1 1 1 19 0 0 1 1 0
20 1 1 0 1 0 1 20 0 1 0 0 1
21 1 1 0 1 1 0 21 0 1 0 1 0
22 1 1 0 1 0 0 22 0 1 1 0 0
23 1 1 1 0 1 1 23 1 0 0 0 1
24 1 1 1 1 0 1 24 1 0 0 1 0
25 1 1 1 1 1 0 25 1 0 1 0 0
26 1 1 1 0 0 1 26 1 1 0 0 0
27 1 1 1 0 1 0 27 0 0 0 0 1
28 1 1 1 1 0 0 28 0 0 0 1 0
29 1 1 1 0 0 0 29 0 0 1 0 0

30 0 1 0 0 0
31 1 0 0 0 0
32 0 0 0 0 0
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II.
A.

B.

1 2 3 4 5 6 7 8 9 10
1 × × × 196 196 196

2 × 21 31 196 196 196

3 12 21 31 196 196 196

4 12 × × 196 196 196

5 21 21 * 196 196 196

6 21 21 31 196 196 196

7 12 21 31 196 196 196

8 12 24 34 196 196 196

9 21 21 * 196 196 196 196

10 24 24 34 196 196 196

11 12 24 34 196 196 196

12 24 24 * 196 196 196

13 21 21 31 196 196 196

14 21 24 * 196 196 196

15 21 24 34 196 196 196

16 21 21 * 196 196 196

17 12 24 34 196 196 196

18 24 24 * 196 196 196 196

19 24 24 34 196 196 196

20 21 24 * 196 196 196 196

21 24 * * 196 196 196

22 24 24 * 196 196 196 196

23 24 * * 196 196 196

24 21 24 34 196 196 196

25 24 24 * 196 196 196

26 21 24 * 196 196 196

27 24 * * 196 196 196 196

28 24 * * 196 196 196

29 * * * 196 196 196 196

30 24 * * 196 196 196 196

31 24 * * 196 196 196

32 * * * 196 196 196 196
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II. (continued)
A.

B.

11 12 13 14 15 16 17 18 19
1 × 191 × 111 191 191 131 191 ×
2 252 × 252 132 ×
3 111 192 131 242 212 192 131 212

4 242 192 131 242 191 192 131 191 192

5 191

6 × 192 × 116 212 192 136 212 ×
7 252 132 252 132

8 252 132 252 132 192

9 196 216 196 216 192

10 2510 × 2510 1310 196

11 242 192 131 * 212 192 131 212

12
13 116 * 136 116 * 192 136 *
14 192

15 116 192 136 116 212 192 136 212 196

16 196

17 252 132 252 132

18 196 216 196 216

19 2510 1310 2510 1310

20 196 216 196 216 192

21 2510 1310 2510 1310 196

22 196 216 196 216 196

23
24 116 192 136 116 * * 136 *
25
26 196

27 196 216 196 216

28 2510 1310 2510 1310

29 196 216 196 216

30 196 216 196 216 196

31
32 196 216 196 216
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II. (concluded)
A.

B.

20 21 22 23 24 25 26 27 28 29
1 191 191 191 191 111 111 191 191 111 191

2 192 × 212 × × 252

3 192 252 242 212 192 252 212

4 192 191 191 192 111 111 191 192 111 191

5 192 191 191 196 116 31 216 196 31 216

6 196 × 216 191 31 116 191 192 31 191

7 252 252 *
8 192 212 212 242 252 252

9 192 212 212 116 31 31

10 196 216 216 34 × 34

11 192 252 242 212 192 252 212

12 196 2510 34 216 196 34 216

13 192 31 116 212 192 31 212

14 * 191 191 196 116 31 216 196 31 216

15 196 216 216 192 31 116 191 * 31 191

16 196 216 216 196 31 31 216 196 * 216

17 252 252 *
18 2510 34 34

19 34 2510 34

20 192 212 212 116 31 31

21 196 216 216 34 2510 34

22 196 216 216 34 34 *
23 196 2510 34 216 196 34 216

24 192 31 116 212 192 31 212

25 216 216 196 34 34 216 196 * 216

26 196 216 216 196 31 31 216 196 * 216

27 2510 34 34

28 34 2510 34

29 * * *
30 196 216 216 34 34 *
31 196 34 34 216 196 * 216

32 * * *

For convenience the groups are divided into cases.
The double Table I gives all cases consistent with congruences (17), (21),

(23) and (25). The results of the discussion are given in Table II. The cases in
Table II left blank are inconsistent with congruences (22) and (24), and therefore
have no groups corresponding to them.

Let κ = κ1p
k2 where dv[κ1, p] = 1 (κ = a, β, c, g, γ, d, k, α, ε, e, j).

In explanation of Table II the groups in cases marked rs are simply iso-
morphic with groups in ArBs.
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The group G′ is taken from the cases marked × . The types are also selected
from these cases.

The cases marked ∗ divide into two or more parts. Let

aε− αe+ jk = I1, aε− jk = I2,

aδ(a− e) + 2I1 = I3, αg − βj = I4,

αδ − βε = I5, εg − δj = I6,

cε− eγ = I7, αe− jk = I8,

δe+ γj = I9, αγ + δk = I10.

The parts into which these groups divide, and the cases with which they are
simply isomorphic, are given in Table III.

III.
A1,2B

∗ dv[I1, p] = p 21 dv[I1, p] = 1 24

A3B
∗ dv[I2, p] = p 31 dv[I2, p] = 1 34

A4B
∗ dv[I3, p] = p 31 dv[I3, p] = 1 34

A12B13 dv[I4, p] = p 191 dv[I4, p] = 1 192

A14B11 dv[I5, p] = p 111 dv[I5, p] = 1 242

A15,18B
∗ dv[I4, p] = p 191 dv[I4, p] = 1 212

A16B24 dv[I6, I5, p] = p 191 dv[I6, I5, p] = 1 192

A20B14 dv[I7, p] = p 191 dv[I7, p] = 1 192

A24,25B
∗ dv[I8, p] = p 31 dv[I8, p] = 1 34

A27B15 dv[I6, p] = p 191 dv[I6, p] = 1 192

A29B7,17 dv[I10, p] = p 242 dv[I10, p] = 1 252

A29B16,26 dv[I9, p] = p 116 dv[I9, p] = 1 31

A29B22,25,30,31 dv[I9, p] = p 2510 dv[I9, p] = 1 34

A29B29,32 dv[I8, I9, p] = p 116 [I8, p] = p, [I9, p] = 1 31

A29B29,32 [I8, p] = 1, [I9, p] = p 2510 [I8, p] = 1, [I9, p] = 1 34
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8. Types. The types for this class are given by equations (30) where the
constants have the values given in Table IV.

IV.
a β c g γ δ k α ε e j

11 0 0 0 0 0 0 0 0 0 0 0
21 1 0 0 0 0 0 0 0 0 0 0
31 κ 1 0 0 0 0 0 0 0 0 0
111 0 1 0 0 0 0 0 0 0 0 0
∗131 0 1 0 0 1 0 0 0 0 0 0
191 0 0 1 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 1 0 0 0 0
∗132 0 1 0 0 1 0 1 0 0 0 0
192 0 0 1 0 0 0 1 0 0 0 0
∗212 0 0 1 0 0 1 1 0 0 0 0
242 0 0 0 0 1 0 1 0 0 0 0
252 0 0 0 0 0 1 1 0 0 0 0
24 1 0 0 0 0 0 0 0 1 0 0
34 κ 1 0 0 0 0 0 0 1 0 0
116 0 1 0 0 0 0 0 0 0 0 1
∗136 0 1 0 0 1 0 0 0 0 0 1

κ = 1, and a non-residue (mod p).
∗For p = 3 these groups are isomorphic in Class II.

A detailed analysis of congruences (32) for several cases is given below as a
general illustration of the methods used.

A3B1.

The special forms of the congruences for this case are

β′xz′ ≡ 0 (mod p),(II)
a′(yz′ − y′z) ≡ kx (mod p),(III)

βv′ ≡ 0, βz′ ≡ 0, βy′ ≡ β′xz′′ (mod p),(IV),(V),(VI)

a′(yz′′ − y′′z) + a′β′x
(
z′′

2

)
≡ αx+ βx′ + a′βy′z (mod p),(VII)

a′(y′z′′ − y′′z′) ≡ ax (mod p),(X)
γv′′ + δv′ ≡ 0 (mod p),(XI)
γz′′ + δz′ ≡ 0 (mod p),(XII)

γy′′ + δy′ ≡ β′xz′′ (mod p),(XIII)

a′(yz′′′ − y′′′z) + a′β′x
(
z′′′

2

)
≡ εx+ γx′′ + δx+ a′δy′z

+ a′γy′′z + a′
(
γ
2

)
y′′z′′ (mod p),

(XIV)

cv′′ ≡ 0, cz′′ ≡ 0, cy′′ ≡ 0 (mod p),(XV),(XVI),(XVII)
a′(y′z′′′ − y′′′z′) ≡ ex (mod p),(XVIII)
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gv′ ≡ 0, gz′ ≡ 0, gy′ ≡ 0 (mod p),(XIX),(XX),(XXI)
a′(y′′z′′′ − y′′′z′′) ≡ jx (mod p),(XXII)

From (II) z′ ≡ 0 (mod p).
The conditions of isomorphism give

∆ ≡

∣∣∣∣∣∣
v′ v′′ v′′′

y′ y′′ y′′′

z′ z′′ z′′′

∣∣∣∣∣∣ 6≡ 0 (mod p).

Multiply (IV), (V), (VI) by γ and reduce by (XII), βγv′ ≡ 0, βγz′ ≡ 0,
βγy′ ≡ 0 (mod p). Since ∆ 6≡ 0 (mod p), one at least of the quantities, v′, z′

or y′ is 6≡ 0 (mod p) and βγ ≡ 0 (mod p).
From (XV), (XVI) and (XVII) c ≡ 0 (mod p), and from (XIX), (XX) and

(XXI) g ≡ 0 (mod p).
From (IV), (V), (VI) and (X) if a ≡ 0, then β ≡ 0 and if a 6≡ 0, then β 6≡ 0

(mod p).
At least one of the three quantities β, γ or δ is 6≡ 0 (mod p) and one, at

least, of a, e or j is 6≡ 0 (mod p).
A3: Since z′′′ ≡ 0 (mod p), (XVIII) gives e ≡ 0. Elimination between (III),

(X), (XIV) and (XXII) gives aε − kj ≡ 0 (mod p). Elimination between (VI)
and (X) gives a′β′z′′2 ≡ aβ (mod p) and aβ is a quadratic residue or non-residue
according as a′β′ is or is not, and there are two types for this case.

A4: Since y′ and z′′ are 6≡ 0 (mod p), e 6≡ 0 (mod p). Elimination between
(VI), (X), (XIII) and (XVIII) gives aδ − βe ≡ 0 (mod p).

This is a special form of (24).
Elimination between (III), (VII), (X), (XIII), (XIV), (XVIII) and (XXII)

gives
2jk + aδ(a− e) + 2(aε− αe) ≡ 0 (mod p).

A24: Since from (XI), (XII) and (XIII) y′′ and z′′′ 6≡ 0 (mod p), and z′′ ≡
v′′ ≡ 0 (mod p), (xxii) gives j 6≡ 0 (mod p).

Elimination between (III), (X), (XVIII) and (XXII) gives

αe− jk ≡ 0 (mod p).

A25: (XI), (XII) and (XIII) give v′ ≡ z′ ≡ 0 and y′, z′′′ 6≡ 0 (mod p) and
this with (XVIII) gives e 6≡ 0.

Elimination between (III), (VII), (XVIII) and (XXII) gives

αe− jk ≡ 0 (mod p).

A28: Since a ≡ 0 then e or j 6≡ 0 (mod p).
Elimination between (III), (VII), (XVIII) and (XXII) gives

αe− jk ≡ 0 (mod p).
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Multiply (XIII) by a′z′′′ and reduce

δe+ γj ≡ a′β′z′′′
2 6≡ 0 (mod p).

A11B1.

The special forms of the congruences for this case are

β′xz′ ≡ 0 (mod p),(II)
kx ≡ 0 (mod p),(III)
βv′ ≡ βz′ ≡ 0, βy′ ≡ β′xz′′,(IV),(V),(VI)

αx+ βx′ ≡ 0 (mod p),(VII)
ax ≡ 0 (mod p),(X)

γv′′ + δv ≡ 0 (mod p),(XI)
γz′′ + δz ≡ 0 (mod p),(XII)

γy′′ + δy ≡ β′xz′′′ (mod p),(XIII)
εx+ γx′′ + δx′ ≡ 0 (mod p),(XIV)

cv′′ ≡ cz′′ ≡ cy′′ ≡ 0 (mod p),(XV),(XVI),(XVII)
ex ≡ 0 (mod p),(XVIII)
gv′ ≡ gz′ ≡ gy′ ≡ 0 (mod p),(XIX),(XX),(XXI)

jx ≡ 0 (mod p),(XXII)

(II) gives z′ = 0, (III) gives k ≡ 0, (X) gives a ≡ 0, (XV), (XVI), (XVII)
give c ≡ 0(∆ 6≡ 0), (XVIII) gives e ≡ 0, (XIX), (XX), (XXI) give g ≡ 0, (XXII)
gives j ≡ 0. One of the two quantities z′′ or z′′′ 6≡ 0 (mod p), and by (VI) and
(XIII) one of the three quantities β, γ or δ is 6≡ 0.

A11: (XIV) gives ε ≡ 0 (mod p). Multiplying (IV), (V), (VI) by γ gives, by
(XII), βγv′ ≡ βγz′ ≡ βγy′ ≡ 0 (mod p), and βγ ≡ 0 (mod p).

A14: Elimination between (VII) and (XIV) gives αδ − βε ≡ 0 (mod p).
A24: (VII) gives α ≡ 0 (mod p), (XIV) ε ≡ 0 or 6≡ 0 (mod p).
A25: (VII) gives α ≡ 0 (mod p), (XIV) ε ≡ or 6≡ 0 (mod p).
A28: (VII) gives α ≡ 0 (mod p), (XIV) ε ≡ or 6≡ 0 (mod p).
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A19B1.

The special forms of the congruences for this case are

c′(yv′ − y′v) ≡ 0 (mod p),(I)
kx ≡ 0 (mod p),(III)

βv ≡ 0, βz ≡ c′(yv′′ − y′′v), βy′ ≡ 0 (mod p),(IV),(V),(VI)
αx+ βx′ ≡ 0 (mod p),(VII)

c′(y′v′′ − y′′v′) ≡ 0 (mod p),(VIII)
ax ≡ 0 (mod p),(X)

γv′′ + δv′ ≡ 0 (mod p),(XI)

γz′′ + δz′ + c′γδy′′v + c′
(
δ
2

)
v′y′ + c′

(
γ
2

)
v′′y′′ ≡ c′(yv′′′ − y′′′v) (mod p),

(XII)

γy′′ + δy′ ≡ 0 (mod p),(XIII)
εx+ γx′′ + δx′ ≡ 0 (mod p),(XIV)

cv′′ ≡ 0, cz′′ ≡ c′(y′v′′′ − y′′′v′), cy′′ ≡ 0 (mod p),(XV),(XVI),(XVII)
ex+ cx′′ ≡ 0 (mod p),(XVIII)

gv′ ≡ 0, gz′ ≡ c′(y′′v′′′ − y′′′v′′), gy′ ≡ 0 (mod p),(XIX),(XX),(XXI)
jx+ gx′ ≡ 0 (mod p).(XXII)

(III) gives k ≡ 0, (X) gives a ≡ 0.
Since dv[(y′v′′′ − y′′′v′), (y′′v′′′ − y′′′v′′), p] = 1 then dv[c, g, p] = 1.
If c 6≡ 0, v′′ ≡ y′′ ≡ 0 (mod p) and therefore g ≡ 0 (mod p) and if g 6≡ 0,

then c ≡ 0 (mod p).
A12: (XVIII) gives e ≡ 0 (mod p). Elimination between (VII) and (XXII)

gives αg − βj ≡ 0 (mod p), (XIV) gives ε ≡ 0 (mod p).
A15: (XVIII) gives e ≡ 0 (mod p). Elimination between (VII) and (XXII)

gives αg − βj ≡ 0 (mod p), (XIV) gives ε ≡ 0 or 6≡ 0 (mod p).
A16: (XVIII) gives e ≡ 0. Elimination between (XIV) and (XXII) gives

εg − δj ≡ 0 (mod p), between (VII) and (XIV) gives αδ − βε ≡ 0.
A18: (XVIII) gives e ≡ 0 (mod p). Elimination between (VII) and (XXII)

gives αg − βj ≡ 0 (mod p), (XIV) gives ε ≡ 0 or 6≡ 0 (mod p).
A19: (VII) gives α ≡ 0 (mod p), (XIV) gives ε ≡ 0, (XXII) gives j ≡ 0

(mod p), (XVIII) gives e ≡ 0 or 6≡ 0 (mod p).
A20: (VII) gives α ≡ 0, (XXII) gives j ≡ 0. Elimination between (XIV) and

(XVIII) gives εc− eγ ≡ 0 (mod p).
A21: (VII) gives α ≡ 0, (XIV) gives ε ≡ 0 or 6≡ 0 (mod p), (XVIII) gives

e ≡ 0, or 6≡ 0, and (XXII) gives j ≡ 0 (mod p).
A22: (VII) gives α ≡ 0, (XIV) gives ε ≡ 0 or 6≡ 0, (XVIII) gives epsilon ≡ 0

or 6≡ 0, (XXII) gives j ≡ 0 (mod p).
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A23: (VII) gives α ≡ 0, (XIV) gives ε ≡ 0, (XVIII) gives ε ≡ 0, (XXII) gives
j ≡ 0 or 6≡ 0 (mod p).

A26: (VII) α ≡ 0, (XIV) ε ≡ 0 or 6≡ 0, (XVIII) ε ≡ 0, (XXII) j ≡ 0 or 6≡ 0
(mod p).

A27: (VII) α ≡ 0, (XIV) ε ≡ 0 or 6≡ 0, (XVIII) ε ≡ 0, (XXII) j ≡ 0 or 6≡ 0
(mod p). Elimination between (XIV) and (XXII) gives εg − δj ≡ 0 (mod p).

A29: (VII) α ≡ 0, (XIV) ε ≡ 0 or 6≡ 0, (XVIII) ε ≡ 0, (XXII) j ≡ 0 or 6≡ 0
(mod p).
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